Background: Intermediate cell carcinoma (Int-CA) is a rare and enigmatic primary liver cancer characterized by uniform tumor cells exhibiting mixed features of both HCC and intrahepatic cholangiocarcinoma. Despite the unique pathological features of int-CA, its molecular characteristics remain unclear yet.
Methods: RNA sequencing and whole genome sequencing profiling were performed on int-CA tumors and compared with those of HCC and intrahepatic cholangiocarcinoma.
Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a broad and continuous spectrum of liver diseases ranging from fatty liver to steatohepatitis. The intricate interactions of genetic, epigenetic, and environmental factors in the development and progression of MASLD remain elusive. Here, we aimed to achieve an integrative understanding of the genomic and transcriptomic alterations throughout the progression of MASLD.
View Article and Find Full Text PDFActive thermogenesis in the brown adipose tissue (BAT) facilitating the utilization of lipids and glucose is critical for maintaining body temperature and reducing metabolic diseases, whereas inactive BAT accumulates lipids in brown adipocytes (BAs), leading to BAT whitening. Although cellular crosstalk between endothelial cells (ECs) and adipocytes is essential for the transport and utilization of fatty acid in BAs, the angiocrine roles of ECs mediating this crosstalk remain poorly understood. Using single-nucleus RNA sequencing and knock-out male mice, we demonstrate that stem cell factor (SCF) derived from ECs upregulates gene expressions and protein levels of the enzymes for de novo lipogenesis, and promotes lipid accumulation by activating c-Kit in BAs.
View Article and Find Full Text PDFStimulator of interferon genes (STING) promotes anti-tumour immunity by linking innate and adaptive immunity, but it remains unclear how intratumoural treatment with STING agonists yields anti-tumour effects. Here we demonstrate that intratumoural injection of the STING agonist cGAMP induces strong, rapid, and selective apoptosis of tumour endothelial cells (ECs) in implanted LLC tumour, melanoma and breast tumour, but not in spontaneous breast cancer and melanoma. In both implanted and spontaneous tumours, cGAMP greatly increases TNFα from tumour-associated myeloid cells.
View Article and Find Full Text PDFThe upper respiratory tract is compromised in the early period of COVID-19, but SARS-CoV-2 tropism at the cellular level is not fully defined. Unlike recent single-cell RNA-Seq analyses indicating uniformly low mRNA expression of SARS-CoV-2 entry-related host molecules in all nasal epithelial cells, we show that the protein levels are relatively high and that their localizations are restricted to the apical side of multiciliated epithelial cells. In addition, we provide evidence in patients with COVID-19 that SARS-CoV-2 is massively detected and replicated within the multiciliated cells.
View Article and Find Full Text PDFOver the last two decades, numerous advances in our understanding of bone cell biology and bone mineral homeostasis have been achieved. As a dynamic connective and supportive tissue, bone is constantly sensing and responding to both external mechanical forces and internal systemic and local signals. A variety of intravital imaging approaches have been investigated to identify molecular and cellular processes and to decipher signaling pathways involved in the cellular communication between different types of bone cells that form bone multicellular units.
View Article and Find Full Text PDFMediating the expansion of vascular beds in many physiological and pathological settings, angiogenesis requires dynamic changes in endothelial cell behavior. However, the molecular mechanisms governing endothelial cell activity during different phases of vascular growth, remodeling, maturation, and quiescence remain elusive. Here, we characterize dynamic gene expression changes during postnatal development and identify critical angiogenic factors in mouse retinal endothelial cells.
View Article and Find Full Text PDFBlood vessels in the mammalian skeletal system control bone formation and support haematopoiesis by generating local niche environments. While a specialized capillary subtype, termed type H, has been recently shown to couple angiogenesis and osteogenesis in adolescent, adult and ageing mice, little is known about the formation of specific endothelial cell populations during early developmental endochondral bone formation. Here, we report that embryonic and early postnatal long bone contains a specialized endothelial cell subtype, termed type E, which strongly supports osteoblast lineage cells and later gives rise to other endothelial cell subpopulations.
View Article and Find Full Text PDFUnlabelled: : Diabetic retinopathy (DR) is the leading cause of blindness in working-age people. Pericyte loss is one of the pathologic cellular events in DR, which weakens the retinal microvessels. Damage to the microvascular networks is irreversible and permanent; thus further progression of DR is inevitable.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
August 2015
Objective: Vascular endothelial growth factor (VEGF) signaling is a major regulator of physiological and pathological angiogenesis. VEGF receptor activity is strongly controlled by endocytosis, which can terminate or enhance signal transduction in the angiogenic endothelium, but the exact molecular regulation of these processes remains incompletely understood. We have therefore examined the function of Numb family clathrin-associated sorting proteins in angiogenesis.
View Article and Find Full Text PDFControllable bandgap widening from 1.8 to 2.6 eV is reported from oxidized MoS2 sheets that are composed of quilted phases of various MoSxOy flakes.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2014
Objective: Although stem cell factor (SCF) has been shown to play a critical role in hematopoiesis, gametogenesis, and melanogenesis, the function of SCF in the regulation of vascular integrity has not been studied.
Approach And Results: We demonstrated that SCF binds to and activates the cKit receptor in endothelial cells, thereby increasing the internalization of vascular endothelial-cadherin and enhancing extravasation of dyes to a similar extent as vascular endothelial growth factor. SCF-mediated cKit activation in endothelial cells enhanced the phosphorylation of endothelial nitric oxide (NO) synthase via the phosphoinositide 3-kinase/Akt signaling pathway and subsequently increased the production of NO.
Human adult stem cells are a readily available multipotent cell source that can be used in regenerative medicine. Despite many advantages, including low tumorigenicity, their rapid senescence and limited plasticity have curtailed their use in cell-based therapies. In this study, we isolated CD34/CD73-double-positive (CD34(+)/CD73(+)) testicular stromal cells (HTSCs) and found that the expression of CD34 was closely related to the cells' stemness and proliferation.
View Article and Find Full Text PDFEndothelial progenitor cells (EPCs) promote new blood vessel formation and increase angiogenesis by secreting growth factors and cytokines in ischemic tissues. Therefore, EPCs have been highlighted as an alternative cell source for wound healing. EPCs can be isolated from various sources, including the bone marrow, cord blood, and adipose tissue.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) self-renew indefinitely as highly organized pluripotent colonies. Unlike mouse pluripotent stem cell colonies, human colonies form a uniform, flat, epithelium-like monolayer. Interestingly, it has been reported that colony morphology is closely correlated with the maintenance of pluripotency.
View Article and Find Full Text PDFTo date, studies on the application of mesodermally derived mesenchymal-, hematopoietic- and vascular-lineage cells for cell therapy have provided either poor or insufficient data. The results are equivocal with regard to therapeutic efficiency and yield. Since the establishment of human embryonic stem cells (hESCs) in 1998, the capacity of hESCs to differentiate into various mesodermal lineages has sparked considerable interest in the regenerative medicine community, a group interested in generating specialized cells to treat patients suffering from degenerative diseases.
View Article and Find Full Text PDFIn general, the formation of embryoid bodies (EBs) is a commonly known method for initial induction of human embryonic stem cells (hESCs) into their derivatives in vitro. Despite the ability of EBs to mimic developmental processing, the specification and classifications of EBs are not yet well known. Because EBs show various differentiation potentials depending on the size and morphology of the aggregated cells, specification is difficult to attain.
View Article and Find Full Text PDFIn stem cell therapy, transfection of specific genes into stem cells is an important technique to induce cell differentiation. To perform gene transfection in human mesenchymal stem cells (hMSCs), we designed and fabricated a non-viral vector system for specific stem cell differentiation. Several kinds of gene carriers were evaluated with regard to their transfection efficiency and their ability to enhance hMSCs differentiation.
View Article and Find Full Text PDFWe determined the expression of the formyl peptide receptor (FPR) family and the functional roles of the FPR family in NK cells. All tested human NK cells express two members of the FPR family (FPR1 and FPR2). The expression of FPR3 was noted to occur in a donor-specific manner.
View Article and Find Full Text PDFTransglutaminase 2 (TGase 2) catalyzes covalent isopeptide bond formation between glutamine and lysine residues. Recently, we reported that TGase 2 activates nuclear factor-kappa B (NF-kappaB) by depleting inhibitor of NF-kappaBalpha (I-kappaBalpha) levels via polymer formation. Furthermore, TGase 2 expression synergistically increases NF-kappaB activity with canonical pathway.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2008
We observed that lysophosphatidylglycerol (LPG) stimulates chemotactic migration in human natural killer (NK) cells. The LPG-induced chemotactic migration of NK cells was completely inhibited by pertussis toxin (PTX). LPG also stimulated the extracellular signal-regulated kinase (ERK) and Akt activities in NK cells.
View Article and Find Full Text PDFJ Microbiol Biotechnol
April 2007
In our previous work, a method of pretreating lipase was developed to prevent loss of its activity during covalent immobilization. In this study, Rhizopus oryzae lipase was pretreated before immobilization and then immobilized on a silica gel surface. The effects of the various materials and conditions used in the pretreatment stage on the activity of immobilized lipase were investigated.
View Article and Find Full Text PDF