Publications by authors named "Jung-Hyun Oh"

Article Synopsis
  • Magnetoresistance is a key phenomenon in technology that helps in detecting magnetic states used in data storage and sensors.
  • Recent research has introduced a new form called bilinear magnetoelectric resistance (BMER), which depends on both electric and magnetic fields.
  • The study suggests that BMER is a broad phenomenon linked to the spin Hall effect, particularly in three-dimensional systems without specific spin textures, and could play an important role in advanced magnetic technology.
View Article and Find Full Text PDF

Background: Fatty infiltration in the subscapularis muscle extends to the upper portion of the muscle first and then to the lower portion only after some degree of fatty change has taken place in the upper region. Although the Goutallier classification is the most widely used method to categorize fatty infiltration, how to accurately and reliably determine the extent of infiltration is controversial.

Purpose: To examine a modified classification that is more reliable in (1) assessing fatty infiltration of the subscapularis muscle and (2) predicting the structural integrity of the repaired tendon by identifying cutoff points for retear.

View Article and Find Full Text PDF

We fabricated graphene oxide (GO)-incorporated polylactic acid (PLA) (GO-PLA) films by using three-dimensional (3D) printing to explore their potential benefits as barrier membranes for guided bone regeneration (GBR). Our results showed that the 3D printed GO-PLA films provided highly favorable matrices for preosteoblasts and accelerated new bone formation in rat calvarial bone defect models.

View Article and Find Full Text PDF

Objectives: A key aspect of rhinoplasty is integrity of nasal valves area because of its fundamental role in patent nasal airway. furthermore, nasal obstruction is a dominant feature in patient with nasal valves dysfunction (NVD) which can be devastating outcome after rhinoplasty.

Methods: Nonetheless, NVD has been widely investigated regarding their etiologies and management.

View Article and Find Full Text PDF

We theoretically demonstrate the spin swapping effect of band structure origin in centrosymmetric ferromagnets. It is mediated by an orbital degree of freedom but does not require inversion asymmetry or impurity spin-orbit scattering. Analytic and tight-binding models reveal that it originates mainly from k points where bands with different spins and different orbitals are nearly degenerate, and thus it has no counterpart in normal metals.

View Article and Find Full Text PDF

Purpose: We aimed to analyze changes in suprascapular nerve (SSN) position within the suprascapular notch during in vivo shoulder abduction.

Materials And Methods: Three-dimensional models of the shoulder complex were constructed based on magnetic resonance imaging of the brachial plexus (BP-MR) in a patient diagnosed with SSN dysfunction but normal scapular movement. Using BP-MR in neutral position and computed tomography data on shoulder abduction, shoulder abduction was simulated as the transition between two positions of the shoulder complex with overlapping of a neutral and abducted scapula.

View Article and Find Full Text PDF

Spin-orbit coupling effect in structures with broken inversion symmetry, known as the Rashba effect, facilitates spin-orbit torques (SOTs) in heavy metal/ferromagnet/oxide structures, along with the spin Hall effect. Electric-field control of the Rashba effect is established for semiconductor interfaces, but it is challenging in structures involving metals owing to the screening effect. Here, we report that the Rashba effect in Pt/Co/AlO structures is laterally modulated by electric voltages, generating out-of-plane SOTs.

View Article and Find Full Text PDF

The orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment.

View Article and Find Full Text PDF

Background: Reoperation is one of the key factors affecting postoperative clinical outcomes. The reoperation rates of cervical surgeries might be different from those of lumbar surgeries due to the anatomical and biomechanical differences. However, there has been no study to compare the reoperation rate between them.

View Article and Find Full Text PDF

Exploiting spin transport increases the functionality of electronic devices and enables such devices to overcome physical limitations related to speed and power. Utilizing the Rashba effect at the interface of heterostructures provides promising opportunities toward the development of high-performance devices because it enables electrical control of the spin information. Herein, the focus is mainly on progress related to the two most compelling devices that exploit the Rashba effect: spin transistors and spin-orbit torque devices.

View Article and Find Full Text PDF

Spin current generation through the spin-orbit interaction in non-magnetic materials lies at the heart of spintronics. When the generated spin current is injected to a ferromagnet, it produces spin-orbit torque and manipulates magnetization efficiently. Optically generated spin currents are expected to be superior to their electrical counterparts in terms of the manipulation speed.

View Article and Find Full Text PDF

Spintronics relies on magnetization switching through current-induced spin torques. However, because spin transfer torque for ferromagnets is a surface torque, a large switching current is required for a thick, thermally stable ferromagnetic cell, and this remains a fundamental obstacle for high-density non-volatile applications with ferromagnets. Here, we report a long spin coherence length and associated bulk-like torque characteristics in an antiferromagnetically coupled ferrimagnetic multilayer.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

Critical shear stress (CSS, mPa) is an index of red blood cell (RBC) aggregability, defined as the minimal shear stress required to disperse RBC aggregates. This study aimed to investigate the association between CSS and the risk of diabetic kidney disease (DKD). A total of 421 (mean age, 58.

View Article and Find Full Text PDF

This paper presents a new set of [Formula: see text] tight-binding (TB) parameters for single-layer phosphorene within the Naval Research Laboratory (NRL) scheme. For this, we develop the numerical algorithm to find the NRL TB parameters fitted to ab initio results. It is shown that the proposed NRL TB parameters successfully reproduce the band structure of a single-layer phosphorene, and even under biaxial or uniaxial strain, they appropriately describe the effects, such as modification of anisotropic effective masses and band gap.

View Article and Find Full Text PDF

The purpose of this study was to conduct a survey of Dirofilaria immitis infection among stray cats in Korea using nested PCR. We included 235 stray cats (121 females and 114 males) and evaluated each for the presence of feline heartworm infection. Blood samples were collected from 135 cats in Daejeon, 50 cats in Seoul, and 50 cats from Gyeonggi-do (Province).

View Article and Find Full Text PDF

Background: Serotonin (5-hydroytryptamine or 5HT) is associated with numerous behavioral and psychological factors and is a biochemical marker of mood. 5HT is involved in the hypothalamic regulation of energy consumption. 5HT controls appetite in the central nerve system (CNS) and stimulates intestinal mobility.

View Article and Find Full Text PDF

The study of medicinal plants for treatment of periodontitis is of great value to establish their efficacy as sources of new antimicrobial drugs. Five hundred and fifty eight Korean local plant extracts were screened for antibacterial activity against representative periodontopathic bacteria such as Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum. Among the various medicinal plants, the alcohol extract of Pittosporum tobira, which significantly exhibited antibacterial effect for all tested strains, showed the highest activity in the antimicrobial assays.

View Article and Find Full Text PDF

The thermopower of Si nanowires was investigated on the basis of electronic transport theory, taking into account ionized impurity scattering as well as electron-phonon scattering. It was found that the enhancement of the Seebeck coefficient in nanowires arising from quantum confinement is unimportant due to the ionized impurity scattering associated with donor deactivation. Furthermore, because the electrical conductivity is degraded significantly as the nanowire size becomes smaller, despite the accompanying slightly enhanced Seebeck coefficient, the reduction of the nanowire size is not beneficial, at least for the thermopower of devices.

View Article and Find Full Text PDF

FimA of Porphyromonas gingivalis, a major pathogen in periodontitis, is known to be closely related to the virulence of these bacteria and has been suggested as a candidate for development of a vaccine against periodontal disease. In order to develop a passive immunization method for inhibiting the establishment of periodontal disease, B hybridoma clones 123-123-10 and 256-265-9, which produce monoclonal antibodies (Mabs) specific to purified fimbriae, were established. Both mAbs reacted with the conformational epitopes displayed by partially dissociated oligomers of FimA, but not with the 43 kDa FimA monomer.

View Article and Find Full Text PDF

An analytical and continuous dc model for cylindrical doped surrounding-gate MOSFETs (SGMOSFETs) in the fully-depleted regime is presented. Starting from Poisson's equation, an implicit charge equation is derived approximately by a superposition principle with the exact channel potential and the charge equations in the depletion approximation. Also, a new explicit charge equation is derived from the implicit charge equation.

View Article and Find Full Text PDF

This study aims to investigate the effect of commonly used non-steroidal anti-inflammatory drugs (NSAIDs) on the pharmacokinetics and the renal elimination of aciclovir in rats. Pharmacokinetic parameters were determined following an intravenous administration of aciclovir (5 mg kg(-1)) to rats in the presence and absence of ketoprofen or naproxen (25 mg kg(-1)). Compared with the control (given aciclovir alone), pre-treatment with ketoprofen or naproxen 30 min before aciclovir administration significantly altered the pharmacokinetics of aciclovir.

View Article and Find Full Text PDF