Stretchable wavy circuit is an essential component in flexible devices, which have wide applications in various fields. In the industrial field, the stretching ability of the circuit is a crucial factor for flexible devices. Therefore, this study proposes laser carving method to increase both stretch ratio and device resolution of the flexible device.
View Article and Find Full Text PDFDiarylethene is one of the photo-responsive materials that show rapid and reversible changes in their color/electrochemical properties and macroscopic deformations in the crystalline phase by light irradiation. Photoisomerization is the main cause of the photo reactivity of diarylethene, and we established a statistical model based on the density matrix formalism, which predicts quantitative isomerization progress as a population term. The model reflects photo-switching properties of the target molecule, which were characterized by first principle calculations, and external stimulus factors (light irradiation conditions and temperature).
View Article and Find Full Text PDFWe investigated the optical and thermal actuation behavior of densely cross-linked photoresponsive polymer (PRP) and polymer nanocomposites containing gold nanoparticles (PRP/Au) using all-atom molecular dynamics (MD) simulations. The modeled molecular structures contain a large number of photoreactive mesogens with linear orientation. Flexible side chains are interconnected through covalent bonds under periodic boundary conditions.
View Article and Find Full Text PDFA liquid crystal network whose chromophores are functionalized by photochromic dye exhibits light-induced mechanical behaviour. As a result, the micro-scaled thermotropic traits of the network and the macroscopic phase behaviour are both influenced as light alternates the shape of the dyes. In this paper, we present an analysis of this photomechanical behaviour based on the proposed multiscale framework, which incorporates the molecular details of microstate evolution into a continuum-based understanding.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2015
As a polymeric system incorporating rigid molecules within its structure, the liquid-crystal network (LCN) has been envisaged as a novel heterogeneous material. Under the influence of external stimuli, the orientational order of the liquid-crystalline phase becomes dilute and overall anisotropy is hence decreased; the actinic light absorbed by photochromic molecules, for example, induces the geometric isomerization and subsequently yields internal stress within the local network. In this study we investigate light- and temperature-induced spontaneous deformations of the LCN structure via a three-dimensional finite element model that incorporates geometric nonlinearity with a photomechanical constitutive model.
View Article and Find Full Text PDF