Understanding how local traffic congestion spreads in urban traffic networks is fundamental to solving congestion problems in cities. In this work, by analyzing the high-resolution data of traffic velocity in Seoul, we empirically investigate the spreading patterns and cluster formation of traffic congestion in a real-world urban traffic network. To do this, we propose a congestion identification method suitable for various types of interacting traffic flows in urban traffic networks.
View Article and Find Full Text PDFHow memories are organized in the brain influences whether they are remembered discretely versus linked with other experiences or whether generalized information is applied to entirely novel situations. Here, we used scFLARE2 (single-chain fast light- and activity-regulated expression 2), a temporally precise tagging system, to manipulate mouse lateral amygdala neurons active during one of two 3 min threat experiences occurring close (3 h) or further apart (27 h) in time. Silencing scFLARE2-tagged neurons showed that two threat experiences occurring at distal times are dis-allocated to orthogonal engram ensembles and remembered discretely, whereas the same two threat experiences occurring in close temporal proximity are linked via co-allocation to overlapping engram ensembles.
View Article and Find Full Text PDFMaking the connection between the function and structure of networked systems is one of the fundamental issues in complex systems and network science. Urban traffic flows are related to various problems in cities and can be represented as a network of local traffic flows. To identify an empirical relation between the function and network structure of urban traffic flows, we construct a time-varying traffic flow network of a megacity, Seoul, and analyze its global efficiency with a percolation-based approach.
View Article and Find Full Text PDFAccording to the encoding specificity hypothesis, memory is best recalled by retrieval cues that overlap with training cues. Human studies generally support this hypothesis. However, memories are thought to be stored in neuronal ensembles (engrams), and retrieval cues are thought to reactivate neurons in an engram to induce memory recall.
View Article and Find Full Text PDFThe dissipation patterns of chlorfenapyr, cyenopyrafen, indoxacarb, and spirotetramat on strawberries and the effects of different household washing methods were investigated. A risk assessment was also conducted by monitoring the insecticide residues detected. The concentrations ranged from 0.
View Article and Find Full Text PDFMemories of past experiences guide future behaviour. Sparse ensembles of neurons, known as engrams, are thought to store memories in the brain. Neurons involved in a particular engram ("engram neurons") are necessary for subsequent memory expression as memory retrieval is thought to be initiated by an external sensory cue reactivating engram neurons.
View Article and Find Full Text PDFTransient receptor potential (TRP) channels are transmembrane protein complexes that play important roles in the physiology and pathophysiology of both the central nervous system (CNS) and the peripheral nerve system (PNS). TRP channels function as non-selective cation channels that are activated by several chemical, mechanical, and thermal stimuli as well as by pH, osmolarity, and several endogenous or exogenous ligands, second messengers, and signaling molecules. On the pathophysiological side, these channels have been shown to play essential roles in the reproductive system, kidney, pancreas, lung, bone, intestine, as well as in neuropathic pain in both the CNS and PNS.
View Article and Find Full Text PDFMost individuals undergo traumatic stresses at some points in their life, but only a small proportion develop stress-related disorders such as anxiety diseases and posttraumatic stress disorder (PTSD). Although stress susceptibility is one determinant of mental disorders, the underlying mechanisms and functional implication remain unclear yet. We found that an increased amount of freezing that animals exhibited in the intertrial interval (ITI) of a stress-enhanced fear learning paradigm, predicts ensuing PTSD-like symptoms whereas resilient mice show ITI freezing comparable to that of unstressed mice.
View Article and Find Full Text PDFExposure to fine particulate matter (PM) comprising toxic compounds arising from air pollution is a major human health concern. It is linked to increased mortality and incidence of various lung diseases. However, the mechanisms underlying the toxic effects of PM on lung fibroblasts have not been fully explored.
View Article and Find Full Text PDFThe internal representation of an experience is thought to be encoded by long-lasting physical changes to the brain ("engrams") . Previously, we and others showed within the lateral amygdala (LA), a region critical for auditory conditioned fear, eligible neurons compete against one other for allocation to an engram. Neurons with relatively higher function of the transcription factor CREB were more likely to be allocated to the engram.
View Article and Find Full Text PDFPhosphatidylinositol-4,5-bisphosphate (PIP), one of the key phospholipids, directly interacts with several membrane and cytosolic proteins at neuronal plasma membranes, leading to changes in neuronal properties including the feature and surface expression of ionotropic receptors. Although PIP is also concentrated at the dendritic spines, little is known about the direct physiological functions of PIP at postsynaptic as opposed to presynaptic sites. Most previous studies used genetic and pharmacological methods to modulate enzymes that alter PIP levels, making it difficult to delineate time- or region-specific roles of PIP.
View Article and Find Full Text PDFO-GlcNAcylated proteins are abundant in the brain and are associated with neuronal functions and neurodegenerative diseases. Although several studies have reported the effects of aberrant regulation of O-GlcNAcylation on brain function, the roles of O-GlcNAcylation in synaptic function remain unclear. To understand the effect of aberrant O-GlcNAcylation on the brain, we used Oga mice which have an increased level of O-GlcNAcylation, and found that Oga mice exhibited impaired spatial learning and memory.
View Article and Find Full Text PDFMicroRNAs (miRNAs) play critical roles in controlling various cellular processes, and the expression levels of individual miRNAs can be considerably altered in pathological conditions such as cancer. Accurate quantification of miRNA at the single-cell level will lead to a better understanding of miRNA function. Here, we present a direct and sensitive method for miRNA detection using atomic force microscopy (AFM).
View Article and Find Full Text PDFBackground: Exosomes, small extracellular vesicles of endosomal origin, have been suggested to be involved in both the metabolism and aggregation of Alzheimer's disease (AD)-associated amyloid β-protein (Aβ). Despite their ubiquitous presence and the inclusion of components which can potentially interact with Aβ, the role of exosomes in regulating synaptic dysfunction induced by Aβ has not been explored.
Results: We here provide in vivo evidence that exosomes derived from N2a cells or human cerebrospinal fluid can abrogate the synaptic-plasticity-disrupting activity of both synthetic and AD brain-derived Aβ.
Despite the pivotal functions of the NMDA receptor (NMDAR) for neural circuit development and synaptic plasticity, the molecular mechanisms underlying the dynamics of NMDAR trafficking are poorly understood. The cell adhesion molecule neuroligin-1 (NL1) modifies NMDAR-dependent synaptic transmission and synaptic plasticity, but it is unclear whether NL1 controls synaptic accumulation or function of the receptors. Here, we provide evidence that NL1 regulates the abundance of NMDARs at postsynaptic sites.
View Article and Find Full Text PDFVarious animal models of Alzheimer disease (AD) are characterized by deficits in spatial memory that are causally related to altered synaptic function and impairment of long-term potentiation (LTP) in the hippocampus. In Tg2576 AD mice, we compared LTP in 2 major hippocampal pathways, Schaffer collateral (SC) and mossy fiber (MF) pathways. Whereas LTP was completely abolished in the SC pathway of Tg2576 mice, we found no decrease in LTP induced by stimulation of the MF pathway.
View Article and Find Full Text PDFOrganic photovoltaic cells (OPVs) with a highly conductive poly 3,4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS) layer as an anode and that were modified with the addition of some organic solvents such as sorbitol (So), dimethyl sulfoxide (DMSO), N-methyl-pyrrolidone (NMP), dimethylformamide (DMF), and ethylene glycol (EG) were fabricated without the use of transparent conducting oxide (TCO). The conductivity of the PEDOT:PSS film that was modified with each additive was enhanced by three orders of magnitude. According to the atomic force microscopy (AFM) study, the conductivity enhancement might have been related to the better connections between the conducting PEDOT chains.
View Article and Find Full Text PDFDespite considerable evidence for a critical role of neuroligin-1 in the specification of excitatory synapses, the cellular mechanisms and physiological roles of neuroligin-1 in mature neural circuits are poorly understood. In mutant mice deficient in neuroligin-1, or adult rats in which neuroligin-1 was depleted, we have found that neuroligin-1 stabilizes the NMDA receptors residing in the postsynaptic membrane of amygdala principal neurons, which allows for a normal range of NMDA receptor-mediated synaptic transmission. We observed marked decreases in NMDA receptor-mediated synaptic currents at afferent inputs to the amygdala of neuroligin-1 knockout mice.
View Article and Find Full Text PDF