It is self-evident that our chests expand and contract during breathing but, surprisingly, exactly how individual alveoli change shape over the respiratory cycle is still a matter of debate. Some argue that all the alveoli expand and contract rhythmically. Others claim that the lung volume change is due to groups of alveoli collapsing and reopening during ventilation.
View Article and Find Full Text PDFUnderstanding how the alveolar mechanics work in live lungs is essential for comprehending how the lung behaves during breathing. Due to the lack of appropriate imaging tools, previous research has suggested that alveolar morphologies are polyhedral rather than spherical based on a 2D examination of alveoli in fixed lungs. Here, we directly observe high-resolution 3D alveoli in live mice lungs utilizing synchrotron x-ray microtomography to show spherical alveolar morphologies from the live lungs.
View Article and Find Full Text PDFBiopolymers are essential building blocks that constitute cells and tissues with well-defined molecular structures and diverse biological functions. Their three-dimensional (3D) complex architectures are used to analyze, control, and mimic various cells and their ensembles. However, the free-form and high-resolution structuring of various biopolymers remain challenging because their structural and rheological control depend critically on their polymeric types at the submicron scale.
View Article and Find Full Text PDFSynchrotron X-rays can be used to obtain highly detailed images of parts of the lung. However, micro-motion artifacts induced by such as cardiac motion impede quantitative visualization of the alveoli in the lungs. This paper proposes a method that applies a neural network for synchrotron X-ray Computed Tomography (CT) data to reconstruct the high-quality 3D structure of alveoli in intact mouse lungs at expiration, without needing ground-truth data.
View Article and Find Full Text PDFSpatiotemporal pH monitoring of single living cells across rigid cell and organelle membranes has been challenging, despite its significance in understanding cellular heterogeneity. Here, we developed a mechanically robust yet tolerably thin nanowire waveguide that enables in situ monitoring of pH dynamics at desired cellular compartments via direct optical communication. By chemically labeling fluorescein at one end of a poly(vinylbenzyl azide) nanowire, we continuously monitored pH variations of different compartments inside a living cell, successfully observing organelle-exclusive pH homeostasis and stimuli-selective pH regulations.
View Article and Find Full Text PDFWhen a liquid drop impacts on a heated substrate, it can remain deposited, or violently boil in contact, or lift off with or without ever touching the surface. The latter is known as the Leidenfrost effect. The duration and area of the liquid-substrate contact are highly relevant for the heat transfer, as well as other effects such as corrosion.
View Article and Find Full Text PDFWe elucidate the evolution of the entrained air in drop impact on a wide range of liquids, using ultrafast X-ray phase-contrast imaging. We elaborate the retraction mechanism of the entrapped air film in terms of liquid viscosity. We found the criterion for deciding if the entrapped air evolves into single or double bubbles, as determined by competition among inertia, capillarity, and viscosity.
View Article and Find Full Text PDFMicrobubbles have been used as a soft template to produce hollow structures for diverse applications in chemistry, materials science, and biomedicine. It is a challenge, however, to control their size and position at single-entity level. We report on an on-demand method to produce and place a single microbubble with programmed size and position.
View Article and Find Full Text PDFThe fountain pen approach, as a means for transferring materials to substrates, has shown numerous incarnations in recent years for creating 2D micro/nanopatterns and even generating 3D free-form nanostructures using a variety of material "inks". While the idea of filled reservoirs used to deliver material to a substrate via a capillary remains unchanged since antiquity, the advent of precise micromanipulation systems and functional material "inks" allows the extension of this mechanism to more high-tech applications. Herein, the recent growth in meniscus guided fountain pen approaches for benchtop micro/nanofabrication, which has occurred in the last decade, is discussed.
View Article and Find Full Text PDFQuantitative probing of the Cu(2+) ions naturally present in single living cells is accomplished by a probe made from a quantum-dot-embedded-nanowire waveguide. After inserting the active nanowire-based waveguide probe into single living cells, J. H.
View Article and Find Full Text PDFQuantitative probing of Cu(2+) ions naturally present in single living cells is realized by developing a quantum-dot-embedded nanowire-waveguide probe. The intracellular Cu(2+) ion concentration is quantified by direct monitoring of photoluminescence quenching during the insertion of the nanowire in a living neuron. The measured intracellular Cu(2+) ion concentration is 3.
View Article and Find Full Text PDFA vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods.
View Article and Find Full Text PDFThe nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments.
View Article and Find Full Text PDFA single photomechanical supramolecular nanowire actuator with an azobenzene-containing 1,3,5-tricarboxamide derivative is developed by employing a direct writing method. Single nanowires display photoinduced reversible bending and the bending behavior follows first-order kinetics associated with azobenzene photoisomerization. A wireless photomechanical nanowire tweezers that remotely manipulates a single micro-particle is also demonstrated.
View Article and Find Full Text PDFDespite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement.
View Article and Find Full Text PDFA simple direct-writing technique can be used to fabricate a stretchable UV-vis-NIR nanowire photodetector (NWPD) consisting of PbS quantum dot (QD)-poly(3-hexylthiopehene) (P3HT) hybrid NWs. The hybrid NWPD shows superior sensitivity and response speed in the UV-vis to NIR range. The stretchable UV-vis-NIR NWPD shows a nearly identical photoresponse under extreme (up to 100%) and repeated (up to 100 cycles) stretching conditions.
View Article and Find Full Text PDFOne of the most questionable issues in wetting is the force balance that includes the vertical component of liquid surface tension. On soft solids, the vertical component leads to a microscopic protrusion of the contact line, that is, a 'wetting ridge'. The wetting principle determining the tip geometry of the ridge is at the heart of the issues over the past half century.
View Article and Find Full Text PDFFour-dimensional imaging, which indicates imaging in three spatial dimensions as a function of time, provides useful evidence to investigate the interactions of rising bubbles. However, this has been largely unexplored for microbubbles, mostly due to problems associated with strong light scattering and shallow depth of field in optical imaging. Here, tracking x-ray microtomography is used to visualize rising microbubbles in four dimensions.
View Article and Find Full Text PDFThe dendritic planarity of Purkinje cells is critical for cerebellar circuit formation. In the absence of Crk and CrkL, the Reelin pathway does not function resulting in partial Purkinje cell migration and defective dendritogenesis. However, the relationships among Purkinje cell migration, dendritic development and Reelin signaling have not been clearly delineated.
View Article and Find Full Text PDFLight-emitting conjugated polymer nanowires are vertically grown and remotely manipulated into a freestanding straight or curved structure in three-dimension. This approach enabled us to eliminate substrate coupling, a critical issue in nanowire photonics in the past decade. We for the first time accomplished characterization of propagation and bending losses of nanowires completely decoupled from a substrate.
View Article and Find Full Text PDFWe report for the first time single nanowires (NWs) with ambipolar (positive/negative) photoresponse that changes sign depending on the illumination wavelength. The single NWs were grown by the meniscus-guided method using inorganic (ZnO nanoparticles)-organic (PEDOT:PSS) hybrid materials. The ambipolar photoresponse of the single NWs enabled us to develop an unprecedented spectrum-discriminating NW photodetector array.
View Article and Find Full Text PDFNumerous cell types have shown a remarkable ability to detect and move along gradients in stiffness of an underlying substrate--a process known as durotaxis. The mechanisms underlying durotaxis are still unresolved, but generally believed to involve active sensing and locomotion. Here, we show that simple liquid droplets also undergo durotaxis.
View Article and Find Full Text PDFThe manner in which the nervous system regulates animal behaviors in natural environments is a fundamental issue in biology. To address this question, C. elegans has been widely used as a model animal for the analysis of various animal behaviors.
View Article and Find Full Text PDFHere we report a tracking X-ray microscopy (TrXM) as a novel methodology by using upper right lung apices alveoli in live intact mice. By enabling tracking of individual alveolar movements during respiration, TrXM identifies alveolar dynamics: individual alveoli in the upper lung apices show a small size increment as 4.9 ± 0.
View Article and Find Full Text PDFColloidal droplets including micro- and nanoparticles generally leave a ringlike stain, called the "coffee ring," after evaporation. We show that fingering emerges during evaporation inside the coffee ring, resulting from a bidispersed colloidal mixture of micro- and nanoparticles. Microscopic observations suggest that finger formation is driven by competition between the coffee-ring and Marangoni effects, especially when the inward Marangoni flow is overwhelmed by the outward coffee-ring flow.
View Article and Find Full Text PDF