Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C.
View Article and Find Full Text PDFGiven the urgency of climate change, it is imperative to develop innovative technologies for repurposing CO into value-added products to achieve carbon neutrality. Additionally, repurposing nitrogen-source-derived wastewater streams is crucial, focusing on sustainability rather than conventional nitrogen removal in wastewater treatment plants. In this context, microbial protein (MP) production presents a sustainable and promising approach for transforming recovered low-value resources into high-quality feed and food.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
Polyethylene (PE) exhibits high resistance to degradation, contributing to plastic pollution. PE discarded into the environment is photo-oxidized by sunlight and oxygen. In this study, a key enzyme capable of degrading oxidized PE is reported for the first time.
View Article and Find Full Text PDFAs thermoplastic, nontoxic, and biocompatible polyesters, polyhydroxyalkanoates (PHAs) are considered promising biodegradable plastic candidates for diverse applications. Short-chain-length/medium-chain-length (SCL/MCL) PHA copolymers are flexible and versatile PHAs that are typically produced from fatty acids, which are expensive and toxic. Therefore, to achieve the sustainable biosynthesis of SCL/MCL-PHAs from renewable non-fatty acid carbon sources (e.
View Article and Find Full Text PDFVarious kinds of plastics have been developed over the past century, vastly improving the quality of life. However, the indiscriminate production and irresponsible management of plastics have led to the accumulation of plastic waste, emerging as a pressing environmental concern. To establish a clean and sustainable plastic economy, plastic recycling becomes imperative to mitigate resource depletion and replace non-eco-friendly processes, such as incineration.
View Article and Find Full Text PDFA genetic approach targeted toward improving athletic performance is called gene doping and is prohibited by the World Anti-Doping Agency. Currently, the clustered regularly interspaced short palindromic repeats-associated protein (Cas)-related assays have been utilized to detect genetic deficiencies or mutations. Among the Cas proteins, deadCas9 (dCas9), a nuclease-deficient mutant of Cas9, acts as a DNA binding protein with a target-specific single guide RNA.
View Article and Find Full Text PDFThis study achieved high production of hexanol via gas fermentation using Clostridium carboxidivorans P7 by extracting hexanol from the fermentation broth. The hexanol extraction efficiency and inhibitory effects on C. carboxidivorans P7 of 2-butyl-1-octanol, hexyl hexanoate and oleyl alcohol were examined, and oleyl alcohol was selected as the extraction solvent.
View Article and Find Full Text PDFMicrobial production of various TCA intermediates and related chemicals through the reductive TCA cycle has been of great interest. However, rumen bacteria that naturally possess strong reductive TCA cycle have been rarely studied to produce these chemicals, except for succinic acid, due to their dependence on fumarate reduction to transport electrons for ATP synthesis. In this study, malic acid (MA), a dicarboxylic acid of industrial importance, was selected as a target chemical for mass production using Mannheimia succiniciproducens, a rumen bacterium possessing a strong reductive branch of the TCA cycle.
View Article and Find Full Text PDFThe use of CO as a carbon source in biorefinery is of great interest, but the low solubility of CO in water and the lack of efficient CO assimilation pathways are challenges to overcome. Formic acid (FA), which can be easily produced from CO and more conveniently stored and transported than CO, is an attractive CO-equivalent carbon source as it can be assimilated more efficiently than CO by microorganisms and also provides reducing power. Although there are native formatotrophs, they grow slowly and are difficult to metabolically engineer due to the lack of genetic manipulation tools.
View Article and Find Full Text PDFWe engineered Escherichia coli to grow on CO and formic acid alone by introducing the synthetic CO and formic acid assimilation pathway, expressing two formate dehydrogenase genes, fine-tuning metabolic fluxes and optimizing the levels of cytochrome bo and bd-I ubiquinol oxidase. Our engineered strain can grow to an optical density at 600 nm of 7.38 in 450 h, and shows promise as a platform strain growing on CO and formic acid alone.
View Article and Find Full Text PDFBackground: The International Agency for Research on Cancer classified 1,2-dichloropropane (1,2-DCP) as a human carcinogen in 2016. It is necessary to establish a health monitoring system for workers exposed to 1,2-DCP. We investigated the correlation between 1,2-DCP concentration in air and urine to determine whether it is appropriate to measure 1,2-DCP in urine as a biological exposure index (BEI).
View Article and Find Full Text PDFSuccinic acid (SA), a dicarboxylic acid of industrial importance, can be efficiently produced by metabolically engineered Mannheimia succiniciproducens. Malate dehydrogenase (MDH) is one of the key enzymes for SA production, but has not been well characterized. Here we report biochemical and structural analyses of various MDHs and development of hyper-SA producing M.
View Article and Find Full Text PDFMicrobial production of chemicals and materials from renewable carbon sources is becoming increasingly important to help establish sustainable chemical industry. In this paper, we review current status of metabolic engineering for the bio-based production of linear and saturated dicarboxylic acids and diamines, important platform chemicals used in various industrial applications, especially as monomers for polymer synthesis. Strategies for the bio-based production of various dicarboxylic acids having different carbon numbers including malonic acid (C3), succinic acid (C4), glutaric acid (C5), adipic acid (C6), pimelic acid (C7), suberic acid (C8), azelaic acid (C9), sebacic acid (C10), undecanedioic acid (C11), dodecanedioic acid (C12), brassylic acid (C13), tetradecanedioic acid (C14), and pentadecanedioic acid (C15) are reviewed.
View Article and Find Full Text PDFEngineering of microorganisms to produce desired bio-products with high titer, yield, and productivity is often limited by product toxicity. This is also true for succinic acid (SA), a four carbon dicarboxylic acid of industrial importance. Acid products often cause product toxicity to cells through several different factors, membrane damage being one of the primary factors.
View Article and Find Full Text PDFThere has been much effort exerted to reduce one carbon (C1) gas emission to address climate change. As one promising way to more conveniently utilize C1 gas, several technologies have been developed to convert C1 gas into useful chemicals such as formic acid (FA). In this study, systems metabolic engineering was utilized to engineer Mannheimia succiniciproducens to efficiently utilize FA.
View Article and Find Full Text PDFMannheimia succiniciproducens, a capnophilic gram-negative rumen bacterium, has been employed for the efficient production of succinic acid. Although M. succiniciproducens metabolism was previously studied using a genome-scale metabolic model, more metabolic characteristics are to be understood.
View Article and Find Full Text PDFSuccinic acid (SA) is a four carbon dicarboxylic acid of great industrial interest that can be produced by microbial fermentation. Here we report development of a high-yield homo-SA producing Mannheimia succiniciproducens strain by metabolic engineering. The PALFK strain (ldhA, pta, ackA, fruA) was developed based on optimization of carbon flux towards SA production while minimizing byproducts formation through the integrated application of in silico genome-scale metabolic flux analysis, omics analyses, and reconstruction of central carbon metabolism.
View Article and Find Full Text PDFSuccinic acid (SA) is one of the fermentative products of anaerobic metabolism, and an important industrial chemical that has been much studied for its bio-based production. The key to the economically viable bio-based SA production is to develop an SA producer capable of producing SA with high yield and productivity without byproducts. Mannheimia succiniciproducens is a capnophilic rumen bacterium capable of efficiently producing SA.
View Article and Find Full Text PDFCurr Opin Biotechnol
December 2016
The structural modification of graphite and multi-wall carbon nanotubes (MWCNTs) during ball-milling was examined. A comparison of structures after ball-milling was made between graphite and MWCNTs. The ball milling parameters were also examined: milling atmospheres, milling methods, milling mode and the addition of additive materials.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
September 2013
Aluminum and its alloy are of importance due to high specific strength. In particular, aluminum matrix composites have good corrosion resistance and mechanical property at high temperatures. However, enhanced mechanical strength and wear resistance via proper heat treatments are strongly required for many structural applications.
View Article and Find Full Text PDFSynergistic microbial communities are ubiquitous in nature and exhibit appealing features, such as sophisticated metabolic capabilities and robustness. This has inspired fast-growing interest in engineering synthetic microbial consortia for biotechnology development. However, there are relatively few reports of their use in real-world applications, and achieving population stability and regulation has proven to be challenging.
View Article and Find Full Text PDF