Publications by authors named "Jung-Heon Lee"

DNA visualization has advanced across multiple microscopy platforms, albeit with limited progress in the identification of novel staining agents for electron microscopy (EM), notwithstanding its ability to furnish a broad magnification range and high-resolution details for observing DNA molecules. Herein, a non-toxic, universal, and simple method is proposed that uses gold nanoparticle-tagged peptides to stain all types of naturally occurring DNA molecules, enabling their visualization under EM. This method enhances the current DNA visualization capabilities, allowing for sequence-specific, genomic-scale, and multi-conformational visualization.

View Article and Find Full Text PDF

Although metal-organic thin films are required for many biorelated applications, traditional deposition methods have proven challenging in preparing these composite materials. Here, a Co-organic composite thin film was prepared by plasma-enhanced atomic layer deposition (PEALD) with cobaltocene (Co(Cp)) on polydimethylsiloxane (PDMS), using two very high frequency (VHF) NH plasmas (60 and 100 MHz), for use as a tissue culture scaffold. VHF PEALD was employed to reduce the temperature and control the thickness and composition.

View Article and Find Full Text PDF

Hydroxyapatite (HA) exhibits outstanding biocompatibility, bioactivity, osteoconductivity, and natural anti-inflammatory properties. Pure HA, ion-doped HA, and HA-polymer composites are investigated, but critical limitations such as brittleness remain; numerous efforts are being made to address them. Herein, the novel self-crystallization of a polymeric single-stranded deoxyribonucleic acid (ssDNA) without additional phosphate ions for synthesizing deoxyribonucleic apatite (DNApatite) is presented.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles (MSNPs) are well known for their adhesive properties with hydrogels and living tissues. However, achieving direct contact between the silica nanoparticle surface and the adherend necessitates the removal of capping agents, which can lead to severe aggregation when exposed to wet surfaces. This aggregation is ineffective for simultaneously bridging the two adherends, resulting in a reduced adhesive strength.

View Article and Find Full Text PDF

This paper presents the first scanning electron microscopy (SEM)-based DNA imaging in biological samples. This novel approach incorporates a metal-free electro-stain reagent, formulated by combining DNA-binding proteins and synthetic polymers to enhance the visibility of 2-nm-thick DNA under SEM. Notably, DNA molecules stain with proteins and polymers appear as dark lines under SEM.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs.

View Article and Find Full Text PDF
Article Synopsis
  • - Idiopathic pulmonary fibrosis (IPF) is a challenging lung disease characterized by excessive cytokines and fibrotic tissue buildup, with current treatments being limited in effectiveness.
  • - Researchers developed an innovative aerosolizable microgel (aero-μGel) that encapsulates nintedanib and pirfenidone to enhance antifibrotic effects, showing improved lung retention and resistance to immune cell attack.
  • - The aero-μGel demonstrated superior antifibrotic outcomes in mouse models compared to traditional dosing methods, leading to reduced fibrosis, restored lung function, and significant therapeutic potential for treating IPF and similar respiratory diseases.
View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines.

View Article and Find Full Text PDF

Biological macromolecules such as proteins and DNA are known to self-assemble into various structural moieties with distinct functions. While nucleic acids are the structural building blocks, peptides exemplify diversity as tailorable biochemical units. Thus, combining the scaffold properties of the biomacromolecule DNA and the functionality of peptides could evolve into a powerful method to obtain tailorable nano assemblies.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) are useful nanomaterials as transducers for colorimetric sensors because of their high extinction coefficient and ability to change color depending on aggregation status. Therefore, over the past few decades, AuNP-based colorimetric sensors have been widely applied in several environmental and biological applications, including the detection of water pollutants. According to various studies, water pollutants are classified into heavy metals or cationic metal ions, toxins, and pesticides.

View Article and Find Full Text PDF

Hydrogel-based electrolytes for flexible solid-state supercapacitors (SSCs) have received significant attention due to their mechanical robustness and stable electrochemical performance over a wide temperature range. However, achieving flame retardancy in such SSCs at subzero temperatures to increase their practical utility remains challenging. Furthermore, there is a need for sustainable and bio-friendly SSCs that use natural polymer-based hydrogel electrolytes.

View Article and Find Full Text PDF

Materials with physicochemical properties and biological activities similar to those of the natural extracellular matrix are in high demand in tissue engineering. In particular, Mo Se inorganic molecular wire (IMW) is a promising material composed of bioessential minerals and possess nanometer-scale diameters, negatively charged surfaces, physical flexibility, and nanotopography characteristics, which are essential for interactions with cell membrane proteins. Here, an implantable 3D Mo Se IMW enhanced gelatin-GMA/silk-GMA hydrogel (IMW-GS hydrogel) is developed for osteogenesis and bone formation, followed by biological evaluations.

View Article and Find Full Text PDF

Background: Bone regeneration research is currently ongoing in the scientific community. Materials approved for clinical use, and applied to patients, have been developed and produced. However, rather than directly affecting bone regeneration, these materials support bone induction, which regenerates bone.

View Article and Find Full Text PDF

Systematic evolution of ligands by exponential enrichment (SELEX) is a method that is generally used for developing aptamers, which have arisen the promising alternatives for antibodies. However, conventional SELEX methods have limitations, such as a limited selection of target molecules, time-consuming and complex fabrication processes, and labor-intensive processes, which result in low selection yields. Here, we used (i) graphene oxide (GO)-coated magnetic nanoparticles in the selection process for separation and label-free detection and (ii) a multilayered microfluidic device manufactured using a three-dimensionally printed mold that is equipped with automated control valves to achieve precise fluid flows.

View Article and Find Full Text PDF

Whitening agents, such as hydrogen peroxide and carbamide peroxide, are currently used in clinical applications for dental esthetic and dental care. However, the free radicals generated by whitening agents cause pathological damage; therefore, their safety issues remain controversial. Furthermore, whitening agents are known to be unstable and short-lived.

View Article and Find Full Text PDF

Current hydrogel strain sensors have met assorted essential requirements of wearing comfort, mechanical toughness, and strain sensitivity. However, an increment in the toughness of a hydrogel usually leads to an increase in elastic moduli that could be unfavorable for wearing comfort. In addition, traits of biofriendly and sustainability require synthesis of the hydrogels from natural polymer-based networks.

View Article and Find Full Text PDF
Article Synopsis
  • Numerous studies have focused on developing synthetic bone graft materials like hydroxyapatite (HAP) that replicate the structure of natural bones, specifically the importance of nanopores, which have been less explored.
  • A new method was created to introduce nanopores into HAP by pressing nanoparticles and sintering them at low temperatures, allowing for control over the nanopore size.
  • The resulting HAP scaffolds with nanopores (SNPs) showed significantly improved mechanical strength, increased cell growth, and better bone regeneration in animal models compared to traditional bone grafts, highlighting the crucial role of nanopores in enhancing their effectiveness.
View Article and Find Full Text PDF

Many physiochemical properties of the extracellular matrix (ECM) of muscle tissues, such as nanometer scale dimension, nanotopography, negative charge, and elasticity, must be carefully reproduced to fabricate scaffold materials mimicking muscle tissues. Hence, we developed a muscle tissue ECM-mimicking scaffold using MoSI inorganic molecular wires (IMWs). Composed of bio-essential elements and having a nanofibrous structure with a diameter of ∼1 nm and a negative surface charge with high stability, MoSI IMWs are ideal for mimicking natural ECM molecules.

View Article and Find Full Text PDF

The development of eco-friendly flame retardants is crucial due to the hazardous properties of most conventional flame retardants. Herein, adenosine triphosphate (ATP) is reported to be a highly efficient "all-in-one" green flame retardant as it consists of three essential groups, which lead to the formation of char with extreme intumescence, namely, three phosphate groups, providing an acid source; one ribose sugar, working as a char source; and one adenine, acting as a blowing agent. Polyurethane foam was used as a model flammable material to demonstrate the exceptional flame retardancy of ATP.

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus aureus (MRSA) causes diseases ranging from skin infections to lethal sepsis and has become a serious threat to human health due to multiple-drug resistance (MDR). Therefore, a resistance-free antibacterial therapy is necessary to overcome MDR MRSA infections. In this study, an antibacterial nanorobot (Ab-nanobot) is developed wherein a cell wall-binding domain (CBD)-endolysin, acting as a sensor, is covalently conjugated with an actuator consisting of an iron oxide/silica core-shell.

View Article and Find Full Text PDF

In this research, dispersion of a new type of one-dimensional inorganic material NbSe, composed of van der Waals bonds, in aqueous solution for bio-application study were studied. To disperse NbSe, which exhibits hydrophobic properties in water, experiments were carried out using a block copolymer (poloxamer) as a dispersant. It was confirmed that PPO, the hydrophobic portion of Poloxamer, was adsorbed onto the surface of NbSe, and PEO, the hydrophilic portion, induced steric hinderance to disperse NbSe to a size of 10 nm or less.

View Article and Find Full Text PDF

Although transmission electron microscopy (TEM) may be one of the most efficient techniques available for studying the morphological characteristics of nanoparticles, analyzing them quantitatively in a statistical manner is exceedingly difficult. Herein, we report a method for mass-throughput analysis of the morphologies of nanoparticles by applying a genetic algorithm to an image analysis technique. The proposed method enables the analysis of over 150,000 nanoparticles with a high precision of 99.

View Article and Find Full Text PDF

The tailored manipulation of ceramic surfaces gained recent interest to optimize the performance and lifetime of composite materials used as implants. In this work, a hierarchical surface texturing of hydroxyapatite (HAp) ceramics was developed to improve the poor adhesive bonding strength in hydroxyapatite and polycaprolactone (HAp/PCL) composites. Four different types of periodic surface morphologies (grooves, cylindric pits, linear waves and Gaussian hills) were realized by a ceramic micro-transfer molding technique in the submillimeter range.

View Article and Find Full Text PDF

Plasmonic gold nanorods (AuNRs) have been widely applied as optical orientation probes in many biophysical studies. However, characterizing the various three-dimensional (3D) orientations of AuNRs in the same focal plane of the objective lens is a challenging task. To overcome this challenge, we fabricated single AuNRs (10 nm × 30 nm) coated with either an elliptical or spherical mesoporous silica shell (AuNRs@mSiO).

View Article and Find Full Text PDF