Recent scientific advances have made headway in addressing pertinient issues in climate change and the sustainability of our natural environment. This study makes use of a novel approach to desalination that is environment friendly, naturally sustainable and energy efficient, meaning that it is also cost efficient. Evaporation is a key phenomenon in the natural environment and used in many industrial applications including desalination.
View Article and Find Full Text PDFHypothesis: Direct contact membrane distillation (DCMD) processes exploit water-repellant membranes to desalt warm seawaters by allowing only water vapor to transport across. While perfluorinated membranes/coatings are routinely used for DCMD, their vulnerability to abrasion, heat, and harsh chemicals necessitates alternatives, such as ceramics. Herein, we systematically assess the potential of ceramic membranes consisting of anodized aluminum oxide (AAO) for DCMD.
View Article and Find Full Text PDFFouling development in direct contact membrane distillation (DCMD) for seawater desalination was evaluated combining in-situ monitoring performed using optical coherence tomography (OCT) together with destructive techniques. The non-invasive monitoring with OCT provided a better understanding of the fouling mechanism by giving an appropriate sampling timing for the membrane autopsy. The on-line monitoring system allowed linking the flux trend with the structure of fouling deposited on the membrane surface.
View Article and Find Full Text PDFA new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated.
View Article and Find Full Text PDFTo ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity.
View Article and Find Full Text PDFAn economic desalination system with a small scale and footprint for remote areas, which have a limited and inadequate water supply, insufficient water treatment and low infrastructure, is strongly demanded in the desalination markets. Here, a direct contact membrane distillation (DCMD) process has the simplest configuration and potentially the highest permeate flux among all of the possible MD processes. This process can also be easily instituted in a multi-stage manner for enhanced compactness, productivity, versatility and cost-effectiveness.
View Article and Find Full Text PDFStudy Design: This is a multicenter, open-label prospective, non interventional study.
Purpose: We wanted to evaluate the impact of fentanyl matrix on the pain and function of patients with spinal disorder-related chronic, non-malignant pain.
Overview Of Literature: Patients with severe non-malignant chronic low back pain may require opioid analgesics for effective pain management.
To enhance the gas adsorption properties and modify the physical properties of carbon nanotubes, multi-walled carbon nanotubes (MWCNTs) were irradiated by high-energy proton beams, and the physical properties including morphology and local surface structure were investigated by using a transmission electron microscope (TEM), magnetic force microscope (MFM) and a gas adsorption isotherm apparatus which can deeply probe the fine structure of surface. Interestingly, clearer MFM images were obtained from the proton irradiated samples which supports that carbon exhibits magnetism under proton bombardments, although the intrinsic magnetic property is not understood. The layering properties of argon on MWCNTs were measured from 59 to 69 K and the interaction of argon on the surface was analyzed.
View Article and Find Full Text PDFJ Am Soc Nephrol
September 2008
CD1d is an MHC class I-like, beta2-microglobulin-associated protein, constitutively expressed by antigen-presenting cells and some epithelial cells, which is recognized by NKT cells, a subpopulation of T cells. CD1d-dependent NKT cells confer protection in immune-mediated disorders, but whether these cells modulate the development of glomerulonephritis is unknown. Experimental crescentic glomerulonephritis was induced by administering anti-glomerular basement membrane antibodies to NKT cell-deficient (CD1d(-/-)) and wild-type mice.
View Article and Find Full Text PDF