Background: The human immunodeficiency virus type-1 (HIV-1) nucleocapsid protein (NC) is an essential and multifunctional protein involved in multiple stages of the viral life cycle such as reverse transcription, integration of proviral DNA, and especially genome RNA packaging. For this reason, it has been considered as an attractive target for the development of new anti-HIV drugs. Although a number of inhibitors of NC have been reported thus far, the search for NC-specific and functional inhibitor(s) with a good antiviral activity continues.
View Article and Find Full Text PDFHere we report a new chemical inhibitor against HIV-1 with a novel structure and mode of action. The inhibitor, designated as A1836, inhibited HIV-1 replication and virus production with a 50% inhibitory concentration (IC₅₀) of 2.0 μM in an MT-4 cell-based and cytopathic protection antiviral assay, while its 50% cytotoxic concentration (CC₅₀) was much higher than 50 μM.
View Article and Find Full Text PDFWe report here that an ethanol extract of Tetracera scandens, a Vietnamese medicinal plant, has anti-HIV activity and possesses strong inhibitory activity against HIV-1 reverse transcriptase (RTase). Using a MT-4 cell-based assay, we found that the T. scandens extract inhibited effectively HIV virus replication with an IC(50) value in the range of 2.
View Article and Find Full Text PDFPurpose: The aim of this pilot study was to investigate the effect of etched microgrooves on the hydrophilicity of Ti and osteoblast responses.
Material And Methods: Microgrooves were applied on Ti to have 15 and 60 µm width, and 3.5 and 10 µm depth by photolithography, respectively.
Surface microgrooves and acid etching on titanium (Ti) have been proposed to enhance various cell behaviors. In this study, surface hydrophilicity, protein adsorption, and alkaline phosphatase activity of osteoblasts were analyzed and compared between microgrooved Ti, Ti with microgrooves and further acid etching, smooth Ti, and acid-etched smooth Ti. Correlations between the results of each experiment were analyzed using Pearson's correlation analysis, and the influential factor on alkaline phosphatase activity was determined using multiple stepwise regression analysis.
View Article and Find Full Text PDFBackground & Aims: Although there has been some success with protein-based anti-tumor necrosis factor alpha (TNF-alpha) therapeutics, the problems associated with protein-based drugs demand alternative approaches. We screened various herbal extracts for their ability to inhibit TNF-alpha secretions and found that BT-201, an n-butanol extract of Panax notoginseng (Burk.) F.
View Article and Find Full Text PDF