Cell-penetrating peptides (CPPs) can translocate across cell membranes, and thus have great potential for the cellular delivery of macromolecular cargoes. However, the mechanism of this cellular uptake process is not yet fully understood. In this study, a time-lapse single-particle light-sheet microscopy technique was implemented to obtain a parallel visualization of the translocating process of individual human immunodeficiency virus 1 (HIV-1) transactivator of transcription (Tat) peptide conjugated quantum dots (TatP-QDs) in complex cellular terrains.
View Article and Find Full Text PDFBackground: The first step in many cellular signaling processes occurs at various types of receptors in the plasma membrane. Membrane cholesterol can alter these signaling pathways of living cells. However, the process in which the interaction of activated receptors is modulated by cholesterol remains unclear.
View Article and Find Full Text PDFLigand-induced receptor dimerization plays a crucial role in the signaling process of living cells. In this study, we developed a theoretical model and performed single-molecule tracking to explore the correlated diffusion processes of liganded epidermal growth factor receptors prior to dimer formation. We disclosed that both an attractive potential between liganded receptor proteins in proximity and correlated fluctuations in the local environments of the proteins play an important role to produce the observed correlated movement of the receptors.
View Article and Find Full Text PDFTwo quantum control spectroscopic techniques were applied to study InAs quantum dot (QD) devices, which contain different strain-reducing layers. By adaptively control light matter interaction, a delayed resonant response from the InAs QDs was found to be encoded into the optimal phase profile of ultrafast optical pulse used. We verified the delayed resonant response to originate from excitons coupled to acoustic phonons of InAs QDs with two-dimensional coherent spectroscopy.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR/ErbB1) is a transmembrane protein that can drive cell growth and survival via the ligand-induced dimerization of receptors. Because dimerization is a common mechanism for signal transduction, it is important to improve our understanding of how the dimerization process and membrane structure regulate signal transduction. In this study, we examined the effect of lipid nanodomains on the dimerization process of EGFR molecules.
View Article and Find Full Text PDFWe developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane of a living cell. Simulation results are presented to elaborate the confinement effects from actin corrals and protein-induced lipid domains. Single-molecule tracking data of epidermal growth factor receptors (EGFR) acquired on live HeLa cells agree with the simulation results and the mechanism that controls the diffusion of single-molecule receptors is clarified.
View Article and Find Full Text PDFHuman adenylate kinase isoenzyme 1 (AK1) is the key enzyme in maintaining the cellular energy homeostasis. The catalysis-associated conformational changes of AK1 involve large-amplitude rearrangements. To decipher the conformational changes of AK1 at the single-molecule level, we tagged AK1 with two identical fluorophores, one near the substrate-binding site and the other at the boundary of the core domain.
View Article and Find Full Text PDFWe developed an off-axis-illuminated zone-plate-based hard x-ray Zernike phase-contrast microscope beamline at Pohang Light Source. Owing to condenser optics-free and off-axis illumination, a large field of view was achieved. The pinhole-type Zernike phase plate affords high-contrast images of a cell with minimal artifacts such as the shade-off and halo effects.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2012
We formalize a theory to help explore the effect of conformational fluctuation on the energy landscape evolution of single-molecule protein. Using this formalization, we investigate the photon emission from single photoactivated fluorescent protein. A bimodal regulation on the energy landscape evolution was discovered, and its origin was attributed to slow conformational fluctuations of the protein matrix.
View Article and Find Full Text PDFA liquid crystal polymer (LCP) self-assembled on a photoirradiated substrate can modify the viscoelastic response of liquid crystal medium on the substrate. Sum-frequency vibrational spectroscopy shows that the phenyl groups of LCP are oriented epitaxially with layer thickness and an in-plane alignment order much higher than that at the photoirradiated surface can be yielded. The liquid crystal molecules confined between the LCP-coated substrates reveals a stronger correlation among the thermally excited fluctuation modes.
View Article and Find Full Text PDFJ Synchrotron Radiat
May 2011
The shapes of light sources such as electron beams can be reconstructed by inverse Fourier transformation of the complex degree of spatial coherency, which can be measured using Young's interferometer. The application of the phase-retrieval algorithm to reduce phase measurement errors in the complex degree of spatial coherency is numerically studied using an electron beam with an asymmetric distribution. This application is demonstrated with experimental data measured at the diagnostic beamline at the Pohang Accelerator Laboratory.
View Article and Find Full Text PDFIntra- and inter-particle coupling effects are important but have not been properly taken into account in modeling the optical response of an array of nano-objects. In this paper, we present a method to analyze the impact of electric quadrupolar coupling on the optical response of a layer of silver nanorods fabricated with oblique-angle deposition (OAD). Our technique can render the non-locally coupled nano-objects into an array of coarse-grained induced charges.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2009
The coherency of the synchrotron radiation at Pohang Accelerator Laboratory has been investigated using Young's interferometer. The electron beam size can be measured precisely using the interferometer. An interferogram using 650 nm light at the diagnostics beamline at Pohang Light Source (PLS) has been measured to determine the electron beam distribution and the spatial coherence length.
View Article and Find Full Text PDFWe propose and experimentally demonstrate the generation of single-cycle terahertz radiation with two-stage optical rectification in GaSe crystals. By adjusting the time delay between the pump pulses employed to excite the two stages, the terahertz radiation from the second GaSe crystal can constructively superpose with the terahertz field injected from the first stage. The high mutual coherence between the two terahertz radiation fields is ensured with the coherent optical rectification process and can be further used to synthesize a desired spectral profile of coherent THz radiation.
View Article and Find Full Text PDFThe population-split genetic algorithm (PSGA) was successfully applied to retrieve femtosecond optical fields from interferometric autocorrelation traces. PSGA strikes a balance between diversity and the size of population in the genetic algorithm. As a result, PSGA is less likely prematurely converging to sub-optimal solutions.
View Article and Find Full Text PDFWe report a study of the effect of optical absorption on generation of coherent infrared radiation from mid-IR to THz region from GaSe crystal. The infrared-active modes of epsilon-GaSe crystal at 236 cm(-1) and 214 cm(-1) were found to be responsible for the observed optical dispersion and infrared absorption edge. Based upon phase matching characteristics of GaSe for difference-frequency generation (DFG), new Sellmeier equations of GaSe were proposed.
View Article and Find Full Text PDFTime-resolved two-dimensional infrared (2D IR) spectroscopy has been applied to analyse an electro-optic switching ferroelectric liquid crystal (FLC) mixture. The 2D IR correlation technique clearly shows that the Goldstone mode in the SmC* phase is suppressed by an applied electric field. The field-induced reorientation process initiates from intramolecular motions in about 10 µs.
View Article and Find Full Text PDFWe reported a type-I difference-frequency generator (DFG), based on erbium doped GaSe (Er:GaSe) crystals as a coherent infrared source tunable from 2.4 mum to 28 mum. The two mixing beams used for the DFG are a tunable near infrared output (1.
View Article and Find Full Text PDFWe report a first demonstration, to our knowledge, of a cw passively mode-locked Nd:GdVO4 laser (k = 1063 nm). A relaxed saturable Bragg reflector was used. The laser generates pulses of 9.
View Article and Find Full Text PDF