Publications by authors named "Jung Woo Sohn"

In composite structures, the precise identification and localization of damage is necessary to preserve structural integrity in applications across such fields as aeronautical, civil, and mechanical engineering. This study presents a deep learning (DL)-assisted framework for simultaneous damage localization and severity assessment in composite structures using Lamb waves (LWs). Previous studies have often focused on either damage detection or localization in composite structures.

View Article and Find Full Text PDF

Pollutants in exhaust gases and the high fuel consumption of internal combustion engines remain key issues in the automotive industry despite the emergence of electric vehicles. Engine overheating is a major cause of these problems. Traditionally, engine overheating was solved using electric pumps and cooling fans with electrically operated thermostats.

View Article and Find Full Text PDF

This paper mainly focuses on various types of robots driven or actuated by shape memory alloy (SMA) element in the last decade which has created the potential functionality of SMA in robotics technology, that is classified and discussed. The wide spectrum of increasing use of SMA in the development of robotic systems is due to the increase in the knowledge of handling its functional characteristics such as large actuating force, shape memory effect, and super-elasticity features. These inherent characteristics of SMA can make robotic systems small, flexible, and soft with multi-functions to exhibit different types of moving mechanisms.

View Article and Find Full Text PDF

In this study, a novel hybrid annular radial magnetorheological damper (HARMRD) is proposed to improve the ride comfort of an electric vehicle (EV) powered by an in-wheel motor (IWM). The model primarily comprises annular-radial ducts in series with permanent magnets. Mathematical models representing the governing motions are formulated, followed by finite element analysis of the HARMRD to investigate the distribution of the magnetic field density and intensity of the magnetorheological (MR) fluid in both the annular and radial ducts.

View Article and Find Full Text PDF

Deep learning has helped achieve breakthroughs in a variety of applications; however, the lack of data from faulty states hinders the development of effective and robust diagnostic strategies using deep learning models. This work introduces a transfer learning framework for the autonomous detection, isolation, and quantification of delamination in laminated composites based on scarce low-frequency structural vibration data. Limited response data from an electromechanically coupled simulation model and from experimental testing of laminated composite coupons were encoded into high-resolution time-frequency images using SynchroExtracting Transforms (SETs).

View Article and Find Full Text PDF

In this work, the material characterization of hardening magneto-rheological (MR) sponge is analyzed and a robot-assisted surgery system integrated with a 6-degrees-of-freedom (DOF) haptic master and slave root is constructed. As a first step, the viscoelastic property of MR sponge is experimentally analyzed. Based on the viscoelastic property and controllability, a MR sponge which can mimic the several reaction force characteristics of human-like organs is devised and manufactured.

View Article and Find Full Text PDF

Vibration control performance of the ring-stiffened cylindrical shell structure is experimentally evaluated in this work. In order to achieve high control performance, advanced flexible piezoelectric actuator whose commercial name is Macro-Fiber Composite (MFC) is adapted to the shell structure. Governing equation is derived by finite element method and dynamic characteristics are investigated from the modal analysis results.

View Article and Find Full Text PDF

In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm.

View Article and Find Full Text PDF