For the protection of human health and environment, there is a growing demand for high-performance, user-friendly biosensors for the prompt detection of pathogenic bacteria in samples containing various substances. We present a nanogap electrode-based purely electrical impedimetric sensor that utilizes the dielectrophoresis (DEP) mechanism. Our nanogap sensor can directly and sensitively detect pathogens present at concentrations as low as 1-10 cells/assay in buffers and drinking milk without the need for separation, purification, or specific ligand binding.
View Article and Find Full Text PDFFast detection of pathogens is important for protecting our health and society. Herein, we present a high-performance nanogap impedimetric sensor for monitoring nucleic acid amplification in real time using isothermal recombinase polymerase amplification (RPA) for rapid pathogen detection. The nanogap electrode chip has two pairs of opposing gold electrodes with a 100 nm gap and was fixed to a PCB.
View Article and Find Full Text PDFExtracellular signal-regulated kinase 2 (ERK2) has become an attractive target for the development of therapeutics for the treatment of cancer. We have been able to identify eight new inhibitors of ERK2 by means of a drug design protocol involving the virtual screening with docking simulations and in vitro enzyme assay. The newly discovered inhibitors can be categorized into three structural classes and reveal a significant potency with IC(50) values ranging from 1 to 30 microM.
View Article and Find Full Text PDF