Publications by authors named "Jung Ik Son"

A peroxynitrite (ONOO(-)) biosensor has been developed through the preparation of a new manganese-[poly-2,5-di-(2-thienyl)-1H-pyrrole)-1-(p-benzoic acid)] (Mn-pDPB) complex. DPB monomer was first synthesized and polymerized for the purpose of providing a polymer backbone for complex formation with Mn(2+) ion. The Mn-pDPB complex was characterized via Magnetomotive Force (MMF) simulation, X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry.

View Article and Find Full Text PDF

A novel amperometric immunosensor with an enhanced sensitivity for the detection of neomycin (Neo) was prepared by covalently immobilizing a monoclonal Neo antibody onto a new conducting polymer, poly-[2,5-di-(2-thienyl)-1H-pyrrole-1-(p-benzoic acid)] (pDPB), as a sensor probe. The probe was used to detect Neo in a sandwich-type approach, where the secondary antibody was attached to gold nanoparticle-decorated multi-wall carbon nanotubes labeled with hydrazine (Hyd-MWCNT(AuNP)-Ab(2)). Hydrazine on the conjugate served as a catalyst for the reduction of hydrogen peroxide, and the catalytic current was monitored at -0.

View Article and Find Full Text PDF

Au nanoparticles-doped conducting polymer nanorods electrodes (AuNPs/CPNEs) were prepared by coating Au nanorods (AuNRs) with a conducting polymer layer. The AuNRs were prepared through an electroless deposition method using the polycarbonate membrane (pore diameter, 50 nm, pore density, 6 x 10(8) pores/cm(2)) as a template. The AuNPs/CPNEs combining catalytic activity of ferrocene to ascorbic acid were used for the fabrication of an ultrasensitive aptamer sensor for thrombin detection.

View Article and Find Full Text PDF
Article Synopsis
  • An amperometric immunosensor was developed for detecting osteoproteogerin (OPG) by attaching a monoclonal antibody to gold nanoparticles on a conductive polymer.
  • The size of the gold nanoparticles was controlled during the electrochemical deposition and characterized using advanced imaging techniques, confirming the successful attachment of the antibody.
  • The immunosensor operates on a competitive immunoassay principle with a detection range of 2.5 to 25 pg/ml and a lower detection limit of 2 pg/ml, effectively identifying OPG in real human samples.
View Article and Find Full Text PDF