Given the previous SARS-CoV-2 pandemic and the inherent unpredictability of viral antigenic drift and shift, preemptive development of diverse neutralizing antibodies targeting a broad spectrum of epitopes is essential to ensure immediate therapeutic and prophylactic interventions during emerging outbreaks. In this study, we present a monoclonal antibody engineered for cross-reactivity to both wild-type and Delta RBDs, which, surprisingly, demonstrates enhanced neutralizing activity against the Omicron variant despite a significant number of mutations. Using an inner membrane display of a human naïve antibody library, we identified antibodies specific to the wild-type SARS-CoV-2 receptor binding domain (RBD).
View Article and Find Full Text PDFBackground: It is difficult to predict the expected survival after lumbar instrumented surgery for metastases owing to the difference among different cancer origins and the relatively short survival after surgery.
Aims: The aim of this study is to analyze the postoperative survival period of lumbar spinal metastasis patients who underwent lumbar instrumented surgery.
Methods: Data were collected from the Korean National Health Insurance Review and Assessment Service database.
The COVID-19 pandemic has significantly impacted human health for three years. To mitigate the spread of SARS-CoV-2, the development of neutralizing antibodies has been accelerated, including the exploration of alternative antibody formats such as single-domain antibodies. In this study, we identified variable new antigen receptors (VNARs) specific for the receptor binding domain (RBD) of SARS-CoV-2 by immunizing a banded houndshark (Triakis scyllium) with recombinant wild-type RBD.
View Article and Find Full Text PDFEndothelin receptor A (ET), a class A G protein-coupled receptor (GPCR), is a promising tumor-associated antigen due to its close association with the progression and metastasis of many types of cancer, such as colorectal, breast, lung, ovarian, and prostate cancer. However, only small-molecule drugs have been developed as ET antagonists with anticancer effects. In a previous study, we identified an antibody (AG8) with highly selective binding to human ET through screening of a human naïve immune antibody library.
View Article and Find Full Text PDFA new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant known as Omicron has caused a rapid increase in recent global patients with coronavirus infectious disease 2019 (COVID-19). To overcome the COVID-19 Omicron variant, production of a recombinant spike receptor binding domain (RBD) is vital for developing a subunit vaccine or a neutralizing antibody. Although bacterial expression has many advantages in the production of recombinant proteins, the spike RBD expressed in a bacterial system experiences a folding problem related to disulfide bond formation.
View Article and Find Full Text PDFThe pH-selective interaction between the immunoglobulin G (IgG) fragment crystallizable region (Fc region) and the neonatal Fc receptor (FcRn) is critical for prolonging the circulating half-lives of IgG molecules through intracellular trafficking and recycling. By using directed evolution, we successfully identified Fc mutations that improve the pH-dependent binding of human FcRn and prolong the serum persistence of a model IgG antibody and an Fc-fusion protein. Strikingly, trastuzumab-PFc29 and aflibercept-PFc29, a model therapeutic IgG antibody and an Fc-fusion protein, respectively, when combined with our engineered Fc (Q311R/M428L), both exhibited significantly higher serum half-lives in human FcRn transgenic mice than their counterparts with wild-type Fc.
View Article and Find Full Text PDFEndothelin receptor A (ET), a class A G-protein-coupled receptor (GPCR), is involved in the progression and metastasis of colorectal, breast, lung, ovarian, and prostate cancer. We overexpressed and purified human endothelin receptor type A in Escherichia coli and reconstituted it with lipid and membrane scaffold proteins to prepare an ET nanodisc as a functional antigen with a structure similar to that of native GPCR. By screening a human naive immune single-chain variable fragment phage library constructed in-house, we successfully isolated a human anti-ET antibody (AG8) exhibiting high specificity for ET in the β-arrestin Tango assay and effective inhibitory activity against the ET-1-induced signaling cascade via ET using either a CHO-K1 cell line stably expressing human ET or HT-29 colorectal cancer cells, in which AG8 exhibited IC values of 56 and 51 nM, respectively.
View Article and Find Full Text PDFOxygen-independent, flavin-binding fluorescent proteins (FbFPs) are emerging as alternatives to green fluorescent protein (GFP), which has limited applicability in studying anaerobic microorganisms, such as human gastrointestinal bacteria, which grow in oxygen-deficient environments. However, the utility of these FbFPs has been compromised because of their poor fluorescence emission. To overcome this limitation, we have employed a high-throughput library screening strategy and engineered an FbFP derived from (SB2) for enhanced quantum yield.
View Article and Find Full Text PDFTargeted delivery of therapeutic agents is of particular interest in the field of cancer treatment. However, there is an urgent need for developing clinically promising targeting approaches that can be readily administered in a green manner. : Five phthalocyanine derivatives bearing different anionic and cationic groups were designed and synthesized.
View Article and Find Full Text PDFDespite remarkable contribution of green fluorescent protein and its variants for better understanding of various biological functions, its application for anaerobic microorganisms has been limited because molecular oxygen is essential for chromophore formation. To overcome the limitation, we engineered a plant-derived light, oxygen, or voltage (LOV) domain containing flavin mononucleotide for enhanced spectral properties. The resulting LOV variants exhibited improved fluorescence intensity (20 and 70% higher for SH3 and 70% for BR1, respectively) compared to iLOV, an LOV variant isolated in a previous study, and the quantum yields of the LOV variants (0.
View Article and Find Full Text PDFAntimicrob Agents Chemother
November 2019
ACC-1 is a plasmid-encoded class C β-lactamase identified in clinical isolates of , , , and ACC-1-producing bacteria are susceptible to cefoxitin, whereas they are resistant to oxyimino cephalosporins. Here, we depict crystal structures of apo ACC-1, adenylylated ACC-1, and acylated ACC-1 complexed with cefotaxime and cefoxitin. ACC-1 has noteworthy structural alterations in the R2 loop, the Ω loop, and the Phe119 loop located along the active-site rim.
View Article and Find Full Text PDFThe bio-sensory organs of living creatures have evolved to have the best sensing performance. They have 3-dimensional protrusions that have large surface areas to accommodate a large number of membrane proteins such as ion channels and G-protein coupled receptors, resulting in high sensitivity and specificity to target molecules. From the perspective of mimicking this system, BLM, which has been used extensively as a platform for a single nanopore-based sensing systems, has some limitations, i.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2019
β-Lactamase-mediated resistance to β-lactam antibiotics has been significantly threatening the efficacy of these clinically important antibacterial drugs. Although some β-lactamase inhibitors are prescribed in combination with β-lactam antibiotics to overcome this resistance, the emergence of enzymes resistant to current inhibitors necessitates the development of novel β-lactamase inhibitors. In this study, we evaluated the inhibitory effect of dinucleotides on an extended-spectrum class C β-lactamase, AmpC BER.
View Article and Find Full Text PDFIntrinsically disordered proteins (IDPs) represent approximately 30% of the human genome and play key roles in cell proliferation and cellular signaling by modulating the function of target proteins via protein-protein interactions. In addition, IDPs are involved in various human disorders, such as cancer, neurodegenerative diseases, and amyloidosis. To understand the underlying molecular mechanism of IDPs, it is important to study their structural features during their interactions with target proteins.
View Article and Find Full Text PDFThe chaperonins (CPNs) are megadalton sized hollow complexes with two cavities that open and close to encapsulate non-native proteins. CPNs are assigned to two sequence-related groups that have distinct allosteric mechanisms. In Group I CPNs a detachable co-chaperone, GroES, closes the chambers whereas in Group II a built-in lid closes the chambers.
View Article and Find Full Text PDFAntimicrob Agents Chemother
May 2017
Nucleotides were effective in inhibiting the class C β-lactamase CMY-10. IMP was the most potent competitive inhibitor, with a value of 16.2 μM.
View Article and Find Full Text PDFNucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568-596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein.
View Article and Find Full Text PDF