In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT).
View Article and Find Full Text PDFUnderstanding brain function is essential for advancing our comprehension of human cognition, behavior, and neurological disorders. Magnetic resonance imaging (MRI) stands out as a powerful tool for exploring brain function, providing detailed insights into its structure and physiology. Combining MRI technology with electrophysiological recording system can enhance the comprehension of brain functionality through synergistic effects.
View Article and Find Full Text PDFMonitoring the body temperature with high accuracy provides a fast, facile, yet powerful route about the human body in a wide range of health information standards. Here, the first ever ultrasensitive and stretchable gold-doped silicon nanomembrane (Au-doped SiNM) epidermal temperature sensor array is introduced. The ultrasensitivity is achieved by shifting freeze-out region to intrinsic region in carrier density and modulation of fermi energy level of p-type SiNM through the development of a novel gold-doping strategy.
View Article and Find Full Text PDFNeurotrophic factors support the survival of dopaminergic neurons. The cerebral dopamine neurotrophic factor (CDNF) is a novel neurotrophic factor with strong trophic activity on dopaminergic neurons comparable to that of glial cell line-derived neurotrophic factor (GDNF). To investigate whether rare or common variants in CDNF are associated with Parkinson disease (PD), we performed mutation analysis of CDNF and a genetic association study between CDNF polymorphisms and PD.
View Article and Find Full Text PDFA new composite consisting of TiO(2) nanotubes and CdS nanoparticles, where CdS particles bind covalently to the titania surface through a bifunctional organic linker, was successfully fabricated; this titania nanotube-based composite shows enhanced photocatalytic activity under visible-light irradiation.
View Article and Find Full Text PDFA new single source approach was developed to synthesize face-centered tetragonal (fct) FePt nanoparticles using bimetallic compound (CO)3Fe(mu-dppm)(mu-CO)PtCl2, which has been characterized by single crystal X-ray diffraction and was used as the precursor to ensure the accurate stoichiometry of the final FePt product; the ability of the molecular complex to act as a single source precursor for the formation of fct FePt nanocrystals with an average diameter of 3.2 nm has been demonstrated.
View Article and Find Full Text PDF(CuI)(3)P(4)S(4) is obtained by reaction of stoichiometric amounts of CuI, P, and S in evacuated silica ampoules. The yellow compound consists of monomeric beta-P(4)S(4) cage molecules that are separated by hexagonal columns of CuI. (CuI)(3)P(4)S(4) crystallizes isotypic to (CuI)(3)P(4)Se(4) in the hexagonal system, space group P6(3)cm (no.
View Article and Find Full Text PDF