Publications by authors named "Jung Hae Yoon"

The spiny mouse, Acomys cahirinus displays a unique wound healing ability with regeneration of all skin components in a scar-free manner. To identify orchestrators of this regenerative response we have performed proteomic analyses of skin from Acomys and Mus musculus before and after wounding. Of the ~2000 proteins identified many are expressed at similar levels in Acomys and Mus, but there are significant differences.

View Article and Find Full Text PDF

rAAVrh74.MCK. is a surrogate gene therapy that inhibits muscular dystrophy in multiple animal models.

View Article and Find Full Text PDF

Background: Rehabilitation therapy using a virtual reality (VR) system for stroke patients has gained attention. However, few studies have investigated fully immersive VR using a head-mount display (HMD) for upper extremity rehabilitation in stroke patients.

Objective: To investigate the feasibility, preliminary efficacy, and usability of a fully immersive VR rehabilitation program using a commercially available HMD for upper-limb rehabilitation in stroke patients.

View Article and Find Full Text PDF

Study Design: Cross-sectional.

Objectives: To investigate the natural course of passive tenodesis grip in individuals with spinal cord injury (SCI) with no experience of tenodesis splint application and the related factors for success of the grip.

Setting: Community-dwelling persons with chronic SCI in South Korea.

View Article and Find Full Text PDF

To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations.

View Article and Find Full Text PDF

Carbon nanomaterials have become increasingly popular microelectrode materials for neuroscience applications. Here we study how the scale of carbon nanotubes and carbon nanofibers affect neural viability, outgrowth, and adhesion. Carbon nanotubes were deposited on glass coverslips via a layer-by-layer method with polyethylenimine (PEI).

View Article and Find Full Text PDF

The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit entorhinal cortex layer II (ECII)→dentate gyrus→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the primary substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light.

View Article and Find Full Text PDF

Recent clinical and pre-clinical studies suggest that both active and passive immunization strategies targeting Aβ amyloid may have clinical benefit in Alzheimer's disease. Here, we demonstrate that vaccination of APPswePSEN1dE9 mice with SDPM1, an engineered non-native Aβ amyloid-specific binding peptide, lowers brain Aβ amyloid plaque burden and brain Aβ1-40 and Aβ1-42 peptide levels, improves cognitive learning and memory in Morris water maze tests and increases the expression of synaptic brain proteins. This was the case in young mice immunized prior to development of significant brain amyloid burden, and in older mice, where brain amyloid was already present.

View Article and Find Full Text PDF

The dystroglycan complex contains the transmembrane protein β-dystroglycan and its interacting extracellular mucin-like protein α-dystroglycan. In skeletal muscle fibers, the dystroglycan complex plays an important structural role by linking the cytoskeletal protein dystrophin to laminin in the extracellular matrix. Mutations that affect any of the proteins involved in this structural axis lead to myofiber degeneration and are associated with muscular dystrophies and congenital myopathies.

View Article and Find Full Text PDF

α dystroglycan (αDG) is part of the dystrophin-associated glycoprotein (DAG) complex, a series of cytoskeletal, transmembrane, and membrane-associated proteins that serve to link the extracellular matrix (ECM) surrounding individual skeletal myofibers to the intracellular F-actin cytoskeleton. Glycosylation and ECM protein binding to αDG are regulated by a number of genes that, when defective, give rise to congenital or limb-girdle forms of muscular dystrophy termed dystroglycanopathies. One such dystroglycanopathy gene is LARGE.

View Article and Find Full Text PDF

Dystroglycan is a major cell surface glycoprotein receptor for the extracellular matrix in skeletal muscle. Defects in dystroglycan glycosylation cause muscular dystrophy and alterations in dystroglycan glycosylation can impact extracellular matrix binding. Here we describe an immunoprecipitation technique that allows isolation of beta dystroglycan with members of the dystrophin-associated protein complex (DAPC) from detergent-solubilized skeletal muscle.

View Article and Find Full Text PDF

During the evolution of humans, an inactivating deletion was introduced in the CMAH (cytidine monophosphate-sialic acid hydroxylase) gene, which eliminated biosynthesis of the common mammalian sialic acid N-glycolylneuraminic acid from all human cells. We found that this human-specific change in sialylation capacity contributes to the marked discrepancy in phenotype between the mdx mouse model for Duchenne muscular dystrophy (DMD) and the human disease. When compared to human patients with DMD, mdx mice show reduced severity or slower development of clinically relevant disease phenotypes, despite lacking dystrophin protein in almost all muscle cells.

View Article and Find Full Text PDF

Defects in glycosylation of decorin can result in systemic hereditary disease. A mutation in the galactosyl transferase I gene is the underlying defect of a progeroid form of Ehlers-Danlos syndrome. We have previously described pathological changes in equine systemic proteoglycan accumulation (ESPA, formerly degenerative suspensory ligament desmitis) as consisting of excessive presence of decorin and other proteoglycans in organs and structures with a high content of connective tissue.

View Article and Find Full Text PDF

The CT carbohydrate, Neu5Ac/Neu5Gcalpha2,3[GalNAcbeta1,4]Galbeta1,4GlcNAcbeta-, is specifically expressed at the neuromuscular junction in skeletal myofibers of adult vertebrates. When Galgt2, the glycosyltransferase that creates the synaptic beta1,4GalNAc portion of this glycan, is overexpressed in extrasynaptic regions of the myofiber membrane, alpha dystroglycan becomes glycosylated with the CT carbohydrate and this coincides with the ectopic expression of synaptic dystroglycan-binding proteins, including laminin alpha4, laminin alpha5, and utrophin. Here we show that both synaptic and extrasynaptic forms of laminin and agrin have increased binding to the CT carbohydrate compared to sialyl-N-acetyllactosamine, its extrasynaptically expressed precursor.

View Article and Find Full Text PDF

A number of recent studies have demonstrated therapeutic effects of transgenes on the development of muscle pathology in the mdx mouse model for Duchenne muscular dystrophy, but none have been shown also to be effective in mouse models for laminin alpha2-deficient congenital muscular dystrophy (MDC1A). Here, we show that overexpression of the cytotoxic T cell (CT) GalNAc transferase (Galgt2) is effective in inhibiting the development of muscle pathology in the dy(W) mouse model of MDC1A, much as we had previously shown in mdx animals. Embryonic overexpression of Galgt2 in skeletal muscles using transgenic mice or postnatal overexpression using adeno-associated virus both reduced the extent of muscle pathology in dy(W)/dy(W) skeletal muscle.

View Article and Find Full Text PDF

Background: Degenerative suspensory ligament desmitis (DSLD) is a debilitating disorder thought to be limited to suspensory ligaments of Peruvian Pasos, Peruvian Paso crosses, Arabians, American Saddlebreds, American Quarter Horses, Thoroughbreds, and some European breeds. It frequently leads to persistent, incurable lameness and need to euthanize affected horses. The pathogenesis remains unclear, though the disease appears to run in families.

View Article and Find Full Text PDF

Molecular and cellular mechanisms for memory consolidation in the cortex are poorly known. To study the relationships between synaptic structure and function in the cortex and consolidation of long-term memory, we have generated transgenic mice in which catalytic activity of PAK, a critical regulator of actin remodeling, is inhibited in the postnatal forebrain. Cortical neurons in these mice displayed fewer dendritic spines and an increased proportion of larger synapses compared to wild-type controls.

View Article and Find Full Text PDF

Tendonitis and tendon rupture have been reported to occur during or following therapy with fluoroquinolone antibiotics. Though the pathogenesis is unknown, several studies suggest that fluoroquinolone antibiotics alter proteoglycan content in soft tissues, including tendons, and thereby alter collagen fibrillogenesis. To better understand the mechanism of action of fluoroquinolones, we studied the effects of enrofloxacin, a widely used fluoroquinolone in veterinary medicine, on avian tendon cell cultures established from gastrocnemius tendons from 18-day-old chicken embryos.

View Article and Find Full Text PDF

Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP.

View Article and Find Full Text PDF

Growth, loading, and mobilization lead to changes in tendon structure. Recent studies have shown that proteoglycans (PGs) regulate the organization of collagen fibrils, the main structural components of tendons. We hypothesized that moderate exercise alters PG synthesis in the avian gastrocnemius tendon.

View Article and Find Full Text PDF

The detection of microquantities of glycosaminoglycans (GAGs) in biological samples has been hampered by the lack of sensitive methods. In this paper we describe the modification and development of three sensitive assays capable of detecting nanogram quantities of GAGs in biological samples. The first assay detects total GAGs.

View Article and Find Full Text PDF