Micromachines (Basel)
July 2024
As the most common energy source of spacecraft, photovoltaic (PV) power generation has become one of the hottest research fields. During the on-orbit operation of spacecraft, the influence of various uncertain factors and the unbalanced inertial force will make the solar PV wing vibrate and degrade its performance. In this study, we investigated the influence of mechanical vibration on the output characteristics of PV array systems.
View Article and Find Full Text PDFPlastics are widely used materials that pose an ecological challenge because their wastes are difficult to degrade. Embedding enzymes and biomachinery within polymers could enable the biodegradation and disposal of plastics. However, enzymes rarely function under conditions suitable for polymer processing.
View Article and Find Full Text PDFThe gut microbiota offers an extensive resource of enzymes, but many remain uncharacterized. To distinguish the activities of similar annotated proteins and mine the potentially applicable ones in the microbiome, we applied an effective Activity-Based Metaproteomics (ABMP) strategy using a specific activity-based probe (ABP) to screen the entire gut microbiome for directly discovering active enzymes and their potential applications, not for exploring host-microbiome interactions. By using an activity-based cyclophellitol aziridine probe specific to α-galactosidases (AGAL), we successfully identified and characterized several gut microbiota enzymes possessing AGAL activities.
View Article and Find Full Text PDFThis publisher's note serves to correct errors in Appl. Opt.63, 2528 (2024)APOPAI0003-693510.
View Article and Find Full Text PDFThe development of semi-artificial photosynthetic systems, which integrate metal-organic frameworks (MOFs) with industrial microbial cell factories for light-driven synthesis of fuels and valuable chemicals, represents a highly promising avenue for both research advancements and practical applications. In this study, an MOF (PCN-222) utilizing racemic-(4-carboxyphenyl) porphyrin and zirconium chloride (ZrCl) as primary constituents is synthesized. Employing a self-assembly process, a hybrid system is constructed, integrating engineered Escherichia coli (E.
View Article and Find Full Text PDFTerahertz time-domain spectroscopy was first used to establish a correlation with the whole-rock iron (TFe) content in different depths of the Bayan Obo protolith. Compared with element content obtained by the traditional method of X-ray fluorescence spectroscopy (XRF), a similar tendency of the absorption coefficient and refractive index is presented. Furthermore, three machine learning algorithms, namely, partial least squares regression (PLSR), random forest (RF), and multi-layer perceptron (MLP), were used to develop a quantitative analytical model for TFe content of the protolith minerals.
View Article and Find Full Text PDFCannabinoids are important therapeutical molecules for human ailments, cancer treatment, and SARS-CoV-2. The central cannabinoid, cannabigerolic acid (CBGA), is generated from geranyl pyrophosphate and olivetolic acid by Cannabis sativa prenyltransferase (CsPT4). Despite efforts to engineer microorganisms such as Saccharomyces cerevisiae (S.
View Article and Find Full Text PDFSaccharomyces cerevisiae is a robust cell factory to secrete or surface-display cellulase and amylase for the conversion of agricultural residues into valuable chemicals. Engineering the secretory pathway is a well-known strategy for overproducing these enzymes. Although cell wall biosynthesis can be tightly linked to the secretory pathway by regulation of all involved processes, the effect of its modifications on protein production has not been extensively studied.
View Article and Find Full Text PDFValerolactam is a monomer used to manufacture high-value nylon-5 and nylon-6,5. However, the biological production of valerolactam has been limited by the inadequate efficiency of enzymes to cyclize 5-aminovaleric acid to produce valerolactam. In this study, we engineered Corynebacterium glutamicum with a valerolactam biosynthetic pathway consisting of DavAB from Pseudomonas putida to convert L-lysine to 5-aminovaleric acid and β-alanine CoA transferase (Act) from Clostridium propionicum to produce valerolactam from 5-aminovaleric acid.
View Article and Find Full Text PDFImbalances in NAD homeostasis have been linked to aging and various diseases. Nicotine, a metabolite of the NAD metabolic pathway, has been found to possess anti-inflammatory and neuroprotective properties, yet the underlying molecular mechanisms remained unknown. Here we find that, independent of nicotinic acetylcholine receptors, low-dose nicotine can restore the age-related decline of NAMPT activity through SIRT1 binding and subsequent deacetylation of NAMPT, thus increasing NAD synthesis.
View Article and Find Full Text PDFSafe and effective nonsteroidal anti-inflammatory drugs are needed. Meanwhile, addition of amino acids to cultures of microorganisms is likely to increase the possibility of novel secondary metabolite isolation. In the course of screening for anti-inflammatory agents using cellular lipopolysaccharide (LPS)-induced nitric oxide (NO) production, two new related compounds with the myceliothermophin structure from a methionine-enriched culture of ATCC 42464 were isolated.
View Article and Find Full Text PDFhas been widely used as a microbial cell factory to produce recombinant proteins. Therefore, enhancing the protein production efficiency of yeast cell factories to expand the market demand for protein products is necessary. Recombinant proteins are often retained in the secretory pathway because of the limited protein transport performed by vesicle trafficking.
View Article and Find Full Text PDFTea polysaccharides (TPSs) are one of the main bioactive constituents of tea with various biological activities such as hypoglycemic effect, antioxidant, antitumor, and immunomodulatory. The bioactivities of TPSs are directly associated with their structures such as chemical composition, molecular weight, glycosidic linkages, and conformation among others. To study the relationship between the structures of TPSs and their bioactivities, it is essential to elucidate the structure of TPSs, particularly the fine structures.
View Article and Find Full Text PDFTheaflavins (TFs), formed by the dimerization of green tea catechins during "fermentation" to prepare black tea, possess antioxidant and anti-inflammatory effects. Reported efficacious effects of black tea (∼2% of TFs) or related products come from catechins unless TFs are assayed. The present study aimed to target the preparation of black tea extract (BTE) enriched with theaflavin mono- and digallates majorly from dry tea leaves in aqueous media versus traditional fermentation of fresh leaves.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune disease characterized by long duration and repeated relapse. This study explored the preventive effect of tangeretin (TAN) and 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone (5-HPMF) on RA, and the underlying molecular mechanism based on a rat model stimulated by bovine type II collagen (BIIC). After the intervention of TAN or 5-HPMF (TAN/5-HPMF) for 5 weeks, the RA lesions and autophagy levels of the synovial tissue were significantly reduced, and the ROS content and HO-1 expression level were down-regulated simultaneously.
View Article and Find Full Text PDFHighly sensitive, real-time and label-free sensing of liquid flow in microfluidic environments remains challenging. Here, by growing high-quality graphene directly on a glass substrate, we designed a microfluidic-integrated graphene-based flow sensor (GFS) capable of detecting complex, weak, and transient flow velocity and pressure signals in a microfluidic environment. This device was used to study weak and transient liquid flows, especially blood flow, which is closely related to heart and artery functions.
View Article and Find Full Text PDFHuan Jing Ke Xue
September 2019
Natural iron-containing minerals present in the geosphere in the form of crystalline minerals can be used as adsorption material for removal of arsenic from wastewater and remediation of arsenic-contaminated soils. In this paper, the adsorption and desorption of arsenic onto different iron-containing materials including hematite, limonite, siderite, ilmenite, magnetite, FeO, FeO, and Fe-Mn binary oxide (FMBO) were studied in laboratory experiments. The mechanism of arsenic adsorption was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFTo explore the source and pollution characteristics of soil arsenic, mineralogy and chemical analysis methods were used to analyze the ore, waste rock, sediment, and river and soil samples around the mining area. Under a polarized light microscope, As-bearing mineral-arsenopyrite was found in the soil, ore, and waste rock around the Banbishan gold mine. Moreover, arsenopyrite in the waste rock has already experienced weathering and oxidation, and the oxidized arsenopyrite easily migrates and is released in the soil, which is potentially harmful.
View Article and Find Full Text PDFArsenic (As) is an environmentally hazardous contaminant which have a serious threat to human health. In recent years, sustainability has drawn increasing attention in the environmental remediation field. Application of natural minerals as a class of iron-containing materials for soil As remediation is meaningful and challenging.
View Article and Find Full Text PDFOptical trapping and manipulation of atoms, nanoparticles, and biological entities are widely employed in quantum technology, biophysics, and sensing. Single traps are typically achieved with linearly polarized light, while vortex beams form rotationally unstable symmetric traps. Here we demonstrate multiplexed optical traps reconfigurable with intensity and polarization of the trapping beam using intensity-dependent polarizability of nanoparticles.
View Article and Find Full Text PDFAccording to the calculated results on the charge distribution of oxygenated heme and deoxygenated heme, and based on the theory of electron excitations in photo-acceptor molecules and the absorption spectra of hemoglobin, it is found that low-level laser within the waveband of about 800-1060 nm can promote the release of oxygen from oxyhemoglobin and improve the oxygen supply of capillaries to surrounding tissues. Furthermore, the reasons have been explained that why the low-level laser at a wavelength of 830 nm is better in the treatment on burn injury and stimulation of hair growth. We also explained why the near-infrared laser of 1064 nm is applied to the forehead to improve cerebral oxygenation in healthy humans.
View Article and Find Full Text PDFThe risk factors for predicting bone metastases in patients with breast cancer are still controversial. Here, a total of 2133 patients with breast cancer, including 327 with bone metastases (15.33%) and 1806 without bone metastases (84.
View Article and Find Full Text PDFIntense electric fields at the nanoscale are essential for single molecule surface-enhanced Raman scattering (SERS) detection. Such fields can be achieved in plasmonic nano-gaps between nanoparticles and metal films through hybridization of surface plasmons. The nano-gaps could be formed and dynamically controlled by using plasmonic tweezers; however, the aggregation of particles in the plasmonic field degrades each particle's enhancement and spoils the nanosized-spatial resolution.
View Article and Find Full Text PDFIn general, when a semiconductor nanowire is trapped by conventional laser beam tweezers, it tends to be aligned with the trapping beam axis rather than confined in the horizontal plane, and this limits the application of these nanowires in many in-plane nanoscale optoelectronic devices. In this work, we achieve the in-plane trapping and manipulation of a single ZnO nanowire by a hybrid plasmonic tweezer system on a flat metal surface. The gap between the nanowire and the metallic substrate leads to an enhanced gradient force caused by deep subwavelength optical energy confinement.
View Article and Find Full Text PDFTypically, metal particles are difficult to manipulate with conventional optical vortex (OV) tweezers, because of their strong absorption and scattering. However, it has been shown that the vortex field of surface plasmonic polaritons, called plasmonic vortex (PV), is capable of stable trapping and dynamic rotation of metal particles, especially those of mesoscopic and Mie size. To uncover the different physical mechanisms of OV and PV tweezers, we investigated the force distribution and trapping potential of metal particles.
View Article and Find Full Text PDF