Naunyn Schmiedebergs Arch Pharmacol
November 2024
Non-small cell lung cancer (NSCLC) is a common malignant tumor characterized by rapid growth and invasive power. Glucose regulatory protein 78 (GRP78) is important in cancer cell progression. Here, this study aimed to explore the effect and mechanism of GRP78 on cisplatin (DDP) resistance of NSCLC cells.
View Article and Find Full Text PDFBackground: Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype.
Aims: Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD).
Dysregulation of long non-coding RNAs (lncRNAs) is associated with the tumorigenesis and ferroptosis of non-small cell lung cancer (NSCLC). BBOX1 antisense RNA 1 (BBOX1-AS1) functions as an oncogenic driver in NSCLC. Here, we aim to investigate the regulation effect and underlying mechanism of BBOX1-AS1 in NSCLC progression and ferroptosis.
View Article and Find Full Text PDFPurpose: Cancer cells maintain cell growth, division, and survival through altered energy metabolism. However, research on metabolic reprogramming in lung adenocarcinoma (LUAD) is limited METHODS: We downloaded TCGA and GEO sequencing data. Consistent clustering with the ConsensusClusterPlus package was employed to detect the scores for four metabolism-related pathways.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) are defined as a class of non-protein-coding RNAs that are longer than 200 nucleotides. Previous studies have shown that lncRNAs play a vital role in the progression of multiple diseases, which highlights their potential for medical applications. The lncRNA hepatocyte nuclear factor 1 homeobox A (HNF1A) antisense RNA 1 (HNF1A-AS1) is known to be abnormally expressed in multiple cancers.
View Article and Find Full Text PDFAcute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a serious respiratory disease, the mechanism is unclear. This paper revealed the mechanism of ganoderic acid B (BB) on lipopolysaccharide-induced pneumonia in mice. Pneumonia model was induced by LPS in mice and A549 cells.
View Article and Find Full Text PDF