Diabetes mellitus is a metabolic disease with a high prevalence worldwide, and cardiovascular complications are the leading cause of mortality in patients with diabetes. Diabetic cardiomyopathy (DCM), which is prone to heart failure with preserved ejection fraction, is defined as a cardiac dysfunction without conventional cardiac risk factors such as coronary heart disease and hypertension. Mitochondria are the centers of energy metabolism that are very important for maintaining the function of the heart.
View Article and Find Full Text PDFBacterial double-stranded DNA (dsDNA) cytosine deaminase DddA-derived cytosine base editor (DdCBE) and its evolved variant, DddA11, guided by transcription-activator-like effector (TALE) proteins, enable mitochondrial DNA (mtDNA) editing at TC or HC (H = A, C, or T) sequence contexts, while it remains relatively unattainable for GC targets. Here, we identified a dsDNA deaminase originated from a Roseburia intestinalis interbacterial toxin (riDddA) and generated CRISPR-mediated nuclear DdCBEs (crDdCBEs) and mitochondrial CBEs (mitoCBEs) using split riDddA, which catalyzed C-to-T editing at both HC and GC targets in nuclear and mitochondrial genes. Moreover, transactivator (VP64, P65, or Rta) fusion to the tail of DddA- or riDddA-mediated crDdCBEs and mitoCBEs substantially improved nuclear and mtDNA editing efficiencies by up to 3.
View Article and Find Full Text PDFSelective inhibition of targeted protein kinases is an effective therapeutic approach for treatment of human malignancies, which interferes phosphorylation of cellular substrates. However, a drug-imposed selection creates pressures for tumor cells to acquire chemoresistance-conferring mutations or activating alternative pathways, which can bypass the inhibitory effects of kinase inhibitors. Thus, identifying downstream phospho-substrates conferring drug resistance is of great importance for developing poly-pharmacological and targeted therapies.
View Article and Find Full Text PDFAbout 47% of pathogenic point mutations could be corrected by ABE-induced A·T-to-G·C conversions. However, the applications of ABEs are still hindered by undesired editing efficiency, limited editing scopes, and off-targeting effects. Here, we develop a new adenine base editor, by embedding TadA-8e monomer into SpRY-nCas9, named as CE-8e-SpRY, which exhibits higher activity at NRN than NYN PAMs favored by SpRY nuclease.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2021
Multi-nucleotide variants (MNVs) represent an important type of genetic variation and have biological and clinical significance. To simulate MNVs, we designed four dual-mutation base editors combining hA3A(Y130F), TadA8e(V106W), and protospacer adjacent motif (PAM)-flexible SpRY and selected cytosine and adenine base editor-SpRY (CABE-RY), which had the best editing performance, for further study. Characterization and comparison showed that CABE-RY had a smaller DNA editing window and lower RNA off-target edits than the corresponding single base editors.
View Article and Find Full Text PDFBackground: Psoriasis is a chronic inflammatory skin disease affecting 2-3% of the population worldwide. Hyperproliferative keratinocytes were thought to be an amplifier of inflammatory response, thereby sustaining persistence of psoriasis lesions. Agents with the ability to inhibit keratinocyte proliferation or induce apoptosis are potentially useful for psoriasis treatment.
View Article and Find Full Text PDFBackground: Psoriasis is a complex, chronic inflammatory skin disease with substantial negative effects on patient quality of life. Long non-coding RNAs (lncRNAs) are able to be involved in multitudes of cellular processes in diverse human diseases. This study aimed to investigate the potential involvement of lncRNA MIR31HG in HaCaT keratinocytes proliferation.
View Article and Find Full Text PDF