Publications by authors named "Junepyo Oh"

' Liberibacter solanacearum' (Lso) is a plant pathogenic bacterium transmitted by psyllids that causes significant agricultural damage. Several Lso haplotypes have been reported. Among them, LsoA and LsoB are transmitted by the potato psyllid and infect solanaceous crops, and LsoD is transmitted by the carrot psyllid and infects apiaceous crops.

View Article and Find Full Text PDF

' Liberibacter solanacearum' (Lso) is a phloem-limited pathogen associated with devastating diseases in members of the Solanaceae and Apiaceae and vectored by several psyllid species. Different Lso haplotypes have been identified, and LsoA and LsoB are responsible for diseases in Solanaceae crops. Our efforts are aimed at identifying pathogenicity factors used by this bacterium to thrive in different hosts.

View Article and Find Full Text PDF

Autophagy is a catabolic process that results in the autophagosomic-lysosomal degradation of bulk cytoplasmic content, abnormal protein aggregates, and excess of/or damaged organelles to promote cell survival. Autophagy is also a component of innate immunity in insects and is involved in the clearance of pathogens, including bacteria. The potato psyllid, , transmits the plant bacterial pathogen ' Liberibacter solanacearum' (Lso) in the Americas and causes serious damage to solanaceous crops.

View Article and Find Full Text PDF

' Liberibacter asiaticus' (CLas) is a bacterium that causes Huanglongbing, also known as citrus greening, in citrus plants. ' Liberibacter solanacearum' (Lso) is a close relative of CLas and in the US it infects solanaceous crops, causing zebra chip disease in potato. Previously, we have identified the Lso hypothetical protein effector 1 (Lso-HPE1).

View Article and Find Full Text PDF

Doped diamond electrodes have attracted significant attention for decades owing to their excellent physical and electrochemical properties. However, direct experimental observation of dopant effects on the diamond surface has not been available until now. Here, low-temperature scanning tunneling microscopy is utilized to investigate the atomic-scale morphology and electronic structures of (100)- and (111)-oriented boron-doped diamond (BDD) electrodes.

View Article and Find Full Text PDF

Adsorbed sulfur has been investigated on the Ag(110) surface at two different coverages, 0.02 and 0.25 monolayers.

View Article and Find Full Text PDF

In 2017, two new tomato mosaic virus (ToMV) isolates were collected from greenhouses in Buyeo, Chungcheongnam-do, South Korea. Full-length cDNAs of the new ToMV isolates were cloned into dual cauliflower mosaic virus 35S and T7 promoter-driven vectors, sequenced and their pathogenicities investigated. The nucleotide sequences of isolates GW1 (MH507165) and GW2 (MH507166) were 99% identical, resulting in only two amino acid differences in nonconserved region II and the helicase domain, Ile668Thr and Val834Ile.

View Article and Find Full Text PDF

In this paper, we report that S atoms on Ag(100) and Ag(110) exhibit a distinctive range of appearances in scanning tunneling microscopy (STM) images, depending on the sample bias voltage, V. Progressing from negative to positive V, the atomic shape can be described as a round protrusion surrounded by a dark halo (sombrero) in which the central protrusion shrinks, leaving only a round depression. This progression resembles that reported previously for S atoms on Cu(100).

View Article and Find Full Text PDF

Using scanning tunneling microscopy, we characterize the size and bias-dependent shape of sulfur atoms on Cu(100) at low coverage (below 0.1 monolayers) and low temperature (quenched from 300 to 5 K). Sulfur atoms populate the Cu(100) terraces more heavily than steps at low coverage, but as coverage approaches 0.

View Article and Find Full Text PDF

Using scanning tunneling microscopy (STM), we observed that adsorption of Se on Cu(111) produced islands with a (√3×√3)R30° structure at Se coverages far below the structure's ideal coverage of 1/3 monolayer. On the basis of density functional theory (DFT), these islands cannot form due to attractive interactions between chemisorbed Se atoms. DFT showed that incorporating Cu atoms into the √3-Se lattice stabilizes the structure, which provided a plausible explanation for the experimental observations.

View Article and Find Full Text PDF

A novel type of action spectrum representing multiple overtone excitations of the v(M-C) mode was observed for lateral hopping of a CO molecule on Ag(110) induced by inelastically tunneled electrons from the tip of a scanning tunneling microscope. The yield of CO hopping shows sharp increases at 261±4  mV, corresponding to the C-O internal stretching mode, and at 61±2, 90±2, and 148±7  mV, even in the absence of corresponding fundamental vibrational modes. The mechanism of lateral CO hopping on Ag(110) was explained by the multistep excitation of overtone modes of v(M-C) based on the numerical fitting of the action spectra, the nonlinear dependence of the hopping rate on the tunneling current, and the hopping barrier obtained from thermal diffusion experiments.

View Article and Find Full Text PDF

Using a combination of scanning tunneling microscopy and density functional theory (DFT) calculations, we have identified a set of related Au-S complexes that form on Au(100), when sulfur adsorbs and lifts the hexagonal surface reconstruction. The predominant complex is diamond-shaped with stoichiometry Au4S5. All of the complexes can be regarded as combinations of S-Au-S subunits.

View Article and Find Full Text PDF

The predominant pathway for the isomerization between cis- and trans-azobenzenes-either (i) inversion by the bending of an NNC bond or (ii) rotation by the torsion of two phenyl rings-continues to be a controversial topic. To elucidate each isomerization pathway, a strategically designed and synthesized azobenzene derivative was investigated on a Ag(111) surface. This was achieved by exciting the molecule with tunneling electrons from the tip of a scanning tunneling microscope (STM).

View Article and Find Full Text PDF

Low-temperature scanning tunneling microscopy (LT-STM) was used to move hydrogen atoms and dissociate NH molecules on a Pt(111) surface covered with an ordered array of nitrogen atoms in a (2 × 2) structure. The N-covered Pt(111) surface was prepared by ammonia oxydehydrogenation, which was achieved by annealing an ammonia-oxygen overlayer to 400 K. Exposing the N-covered surface to H2(g) forms H atoms and NH molecules.

View Article and Find Full Text PDF

Using scanning tunneling microscopy, we observe an adlayer structure that is dominated by short rows of S atoms, on unreconstructed regions of a Au(111) surface. This structure forms upon adsorption of low S coverage (less than 0.1 monolayer) on a fully reconstructed clean surface at 300 K, then cooling to 5 K for observation.

View Article and Find Full Text PDF

A rich menagerie of structures is identified at 5 K following adsorption of low coverages (≤0.05 monolayers) of S on Cu(111) at room temperature. This paper emphasizes the reconstructions at the steps.

View Article and Find Full Text PDF

Polymorphic transition from the 1D ribbon to the 2D carpet superstructure of squaric acid molecules on Au(111) was achieved through a thermally activated process. Our combined STM and DFT study revealed that the molecular arrangements in 1D and 2D superstructures are determined by the stability of their conformational isomers and assembled structures, respectively.

View Article and Find Full Text PDF

Graphene functionalization is of great importance in applying graphene as a component in functional devices or in activating it for use as a catalyst. Here we reveal that atomic oxidation of epitaxial graphene grown on a metal substrate results in the formation of enolate, i.e.

View Article and Find Full Text PDF

Measurements of angular distributions for the scattering of well-defined incident beams of CO and N(2) molecules from a graphite surface are presented. The measurements were carried out over a range of graphite surface temperatures from 150 to 400 K and a range of incident translational energies from 275 to over 600 meV. The behavior of the widths, positions and relative intensities of the angular distributions for both CO and N(2) were found to be quite similar.

View Article and Find Full Text PDF

Recently an extensive series of measurements has been presented for the angular distributions of oxygen molecules scattered from a graphite surface. Incident translational energies ranged from 291 to 614 meV with surface temperatures from 150 to 500 K. The measurements were taken with a fixed angle of 90° between the source beam and the detector and the angular distributions consisted of a single broad peak with the most probable intensity located at an angle slightly larger than the 45° specular position.

View Article and Find Full Text PDF

The scattering of the oxygen molecule from a graphite surface has been studied using a molecular beam scattering technique. The angular intensity distributions of scattered oxygen molecules were measured at incident energies from 291 to 614 meV with surface temperatures from 150 to 500 K. Every observed distribution has a single peak at a larger final angle than the specular angle of 45° which indicates that the normal component of the translation energy of the oxygen molecule is lost by the collision with the graphite surface.

View Article and Find Full Text PDF

The effect of the local electronic modification of the graphite surface on the gas-graphite interaction has been investigated by the molecular beam scattering technique. The angular intensity distributions of He and Ar beams scattered from pristine and defect induced graphite surfaces have been measured at various surface temperatures. From the He scattering results, the cross-section for the He diffuse scattering per defect is estimated as being as much as 113 nm(2).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionf84fl0u452u1tjipfv052ndvma1577l2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once