Recent discoveries that provide a link between inositol phosphate (IP) signaling and fundamental cellular processes evoke many exciting new hypotheses about IP function, and underscore the importance of understanding how IP synthesis is regulated. Central to studies of IP metabolism is the essential development of efficient, fast, and reproducible methods for quantitative analysis of IPs in systems ranging from simple cell cultures to more complex tissues and whole organisms. Additionally, in many cases there is a need to pharmacologically and/or genetically alter IP kinase and phosphatase activities in order to visualize low abundance inositol signaling messengers.
View Article and Find Full Text PDFMany key regulatory proteins, including members of the Ras family of GTPases, are modified at their C terminus by a process termed prenylation. This processing is initiated by the addition of an isoprenoid lipid, and the proteins are further modified by a proteolytic event and methylation of the C-terminal prenylcysteine. Although the biological consequences of prenylation have been characterized extensively, the contributions of prenylcysteine methylation to the functions of the modified proteins are not well understood.
View Article and Find Full Text PDFBisphosphate 3'-nucleotidase (BPNT1 in mammals and Met22/Hal2 in yeast) is one of five members of a family of signaling phosphatases united through a common tertiary structure and inhibition by subtherapeutic doses of the antibipolar drug lithium. Here we report a role for 3'-nucleotidase and its substrate, 3'-phosphoadenosine 5'-phosphate (PAP), in mediating the cellular effects of lithium. Lithium-induced inhibition of growth in yeast cells may be overcome by dose-dependent heterologous expression of human BPNT1.
View Article and Find Full Text PDFRecent investigations identified heterozygous CFC1 mutations in subjects with heterotaxy syndrome, all of whom had congenital cardiac malformations, including malposition of the great arteries. We hypothesized that a subset of patients with similar types of congenital heart disease---namely, transposition of the great arteries and double-outlet right ventricle, in the absence of laterality defects---would also have CFC1 mutations. Our analysis of the CFC1 gene in patients with these cardiac disorders identified two disease-related mutations in 86 patients.
View Article and Find Full Text PDF