Publications by authors named "June V Harriss"

In the developing mouse embryo, the first hematopoietic stem cells (HSCs) arise in the aorta-gonad-mesonephros (AGM) and mature as they transit through the fetal liver (FL). Compared with FL and adult HSCs, AGM HSCs have reduced repopulation potential in irradiated adult transplant recipients but mechanisms underlying this deficiency in AGM HSCs are poorly understood. By co-expression gene network analysis, we deduced that AGM HSCs show lower levels of interferon-α (IFN-α)/Jak-Stat1-associated gene expression than FL HSCs.

View Article and Find Full Text PDF

Previous transgenic-reporter and targeted-deletion studies indicate that the subset-specific expression of CD8αβ heterodimers is controlled by multiple enhancer activities, since no silencer elements had been found within the locus. We have identified such a silencer as L2a, a previously characterized ∼ 220 bp nuclear matrix associating region (MAR) located ∼ 4.5 kb upstream of CD8α.

View Article and Find Full Text PDF

Proper thymocyte development is required to establish T-cell central tolerance and to generate naive T cells, both of which are essential for T-cell homeostasis and a functional immune system. Here we demonstrate that the loss of transcription factor Foxp1 results in the abnormal development of T cells. Instead of generating naive T cells, Foxp1-deficient single-positive thymocytes acquire an activated phenotype prematurely in the thymus and lead to the generation of peripheral CD4(+) T and CD8(+) T cells that exhibit an activated phenotype and increased apoptosis and readily produce cytokines upon T-cell receptor engagement.

View Article and Find Full Text PDF

The m-Bop protein encoded by the mouse Bop gene is strongly expressed in heart and skeletal muscle, and recent studies with Bop knockout mice have demonstrated that m-Bop is essential for cardiogenesis in vivo and can act as a HDAC-dependent repressor in vitro. In the present studies, m-Bop was observed to interact with skNAC, a reported transcriptional activator specific to heart and skeletal muscle. The amino-terminal S region of the split S-ET domain of m-Bop as well as the MYND domain were required for interaction with skNAC in both the two-hybrid system and in coimmunoprecipitation experiments from cultured mammalian cells.

View Article and Find Full Text PDF

Many transcription factors regulate specific temporal-spatial events during cardiac differentiation; however, the mechanisms that regulate such events are largely unknown. Using a modified subtractive hybridization method to identify specific genes that influence early cardiac development, we found that Bop is expressed specifically in cardiac and skeletal muscle precursors before differentiation of these lineages. Bop encodes a protein containing MYND and SET domains, which have been shown to regulate transcription by mediating distinct chromatin modifications.

View Article and Find Full Text PDF