Four-and-a-half LIM domains protein 2 (FHL2) is an anti-hypertrophic adaptor protein that regulates cardiac myocyte signalling and function. Herein, we identified cardiomyopathy-associated 5 (CMYA5) as a novel FHL2 interaction partner in cardiac myocytes. In vitro pull-down assays demonstrated interaction between FHL2 and the N- and C-terminal regions of CMYA5.
View Article and Find Full Text PDFSulforaphane (SFN) is a phytochemical compound extracted from cruciferous plants, like broccoli or cauliflower. Its isothiocyanate group renders SFN reactive, thus allowing post-translational modification of cellular proteins to regulate their function with the potential for biological and therapeutic actions. SFN and stabilized variants recently received regulatory approval for clinical studies in humans for the treatment of neurological disorders and cancer.
View Article and Find Full Text PDFAim: Muscarinic acetylcholine receptors (AChMR1-5) are fundamental for cellular responses upon release of the neurotransmitter acetylcholine (ACh) from parasympathetic nerve fibers. ACh is the prototypical agonist stimulating endothelium-dependent dilation, but most blood vessels lack parasympathetic innervation, raising the question as to the physiologic function of endothelial AChMR in vivo. Global deletion of AChM3R revealed a role in ACh-induced vasodilation in vitro and food uptake, but overall cardiovascular homeostasis has not been examined thoroughly.
View Article and Find Full Text PDFEngineered heart tissue (EHT) from primary heart cells contains endothelial cells (ECs), but the extent to which ECs organize into vessel-like structures or even functional vessels remains unknown and is difficult to study by conventional methods. In this study, we generated fibrin-based mini-EHTs from a transgenic mouse line (Cdh5-CreERT2 × Rosa26-LacZ), in which ECs were specifically and inducibly labeled by applying tamoxifen (EC(iLacZ)). EHTs were generated from an unpurified cell mix of newborn mouse hearts and were cultured under standard serum-containing conditions.
View Article and Find Full Text PDFThe assessment of proarrhythmic risks of drugs remains challenging. To evaluate the suitability of rat engineered heart tissue (EHT) for detecting proarrhythmic effects. We monitored drug effects on spontaneous contractile activity and, in selected cases, on action potentials (sharp microelectrode) and Ca2+ transients (Fura-2) and contraction under electrical pacing.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress has been implicated in a variety of cardiovascular diseases. During ER stress, disruption of the complex of protein phosphatase 1 regulatory subunit 15A and catalytic subunit of protein phosphatase 1 by the small molecule guanabenz (antihypertensive, α2-adrenoceptor agonist) and subsequent inhibition of stress-induced dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) results in prolonged eIF2α phosphorylation, inhibition of protein synthesis and protection from ER stress. In this study we assessed whether guanabenz protects against ER stress in cardiac myocytes and affects the function of 3 dimensional engineered heart tissue (EHT).
View Article and Find Full Text PDFIn engineered heart tissues (EHT), oxygen and nutrient supply via mere diffusion is a likely factor limiting the thickness of cardiac muscle strands. Here, we report on a novel method to in vitro perfuse EHT through tubular channels. Adapting our previously published protocols, we expanded a miniaturized fibrin-based EHT-format to a larger six-well format with six flexible silicone posts holding each EHT (15×25×3 mm³).
View Article and Find Full Text PDFMyosin-binding protein C (Mybpc3)-targeted knock-in mice (KI) recapitulate typical aspects of human hypertrophic cardiomyopathy. We evaluated whether these functional alterations can be reproduced in engineered heart tissue (EHT) and yield novel mechanistic information on the function of cMyBP-C. EHTs were generated from cardiac cells of neonatal KI, heterozygous (HET) or wild-type controls (WT) and developed without apparent morphological differences.
View Article and Find Full Text PDFRationale: Tissue engineering may provide advanced in vitro models for drug testing and, in combination with recent induced pluripotent stem cell technology, disease modeling, but available techniques are unsuitable for higher throughput.
Objective: Here, we present a new miniaturized and automated method based on engineered heart tissue (EHT).
Methods And Results: Neonatal rat heart cells are mixed with fibrinogen/Matrigel plus thrombin and pipetted into rectangular casting molds in which two flexible silicone posts are positioned from above.