Publications by authors named "June Kyu Hwang"

Immuno-oncology (IO) has been an active area of oncology research. Following US FDA approval of the first immune checkpoint inhibitor (ICI), ipilimumab (human IgG1 k anti-CTLA-4 monoclonal antibody), in 2011, and of the first oncolytic virus, Imlygic (talimogene laherparepvec), in 2015, there has been renewed interest in IO. In the past decade, ICIs have changed the treatment paradigm for many cancers by enabling better therapeutic control, resuming immune surveillance, suppressing tumor immunosuppression, and restoring antitumor immune function.

View Article and Find Full Text PDF

Recording the activity of neural populations at high sampling rates is a fundamental requirement for understanding computation in neural circuits. Two photon microscopy provides one promising approach towards this. However, neural circuits are three dimensional, and functional imaging in two dimensions fails to capture the 3D nature of neural dynamics.

View Article and Find Full Text PDF

Adenovirus (Ad) is a widely used vector for cancer gene therapy but its therapeutic efficacy is limited by low coxsackievirus and adenovirus receptor (CAR) expression in tumors and non-specifically targeted infection. Ad infectivity and specificity can be markedly improved by creating Ad-magnetic nanoparticles cluster complexes and directing their migration with an external magnetic field (MGF). We electrostatically complexed GFP-expressing, replication-incompetent Ad (dAd) with PEGylated and cross-linked iron oxide nanoparticles (PCION), generating dAd-PCION complexes.

View Article and Find Full Text PDF

Various ways to inhibit vascular endothelial growth factor (VEGF), a key facilitator in tumor angiogenesis, are being developed to treat cancer. The soluble VEGF decoy receptor (FP3), due to its high affinity to VEGF, is a highly effective and promising strategy to disrupt VEGF signaling pathway. Despite potential advantage and potent therapeutic efficacy, its employment has been limited by very poor in vivo pharmacokinetic properties.

View Article and Find Full Text PDF

Although oncolytic adenoviruses (Ads) are an attractive option for cancer gene therapy, the intravenous administration of naked Ad still encounters unfavorable host responses, non-specific interactions, and heterogeneity in targeted cancer cells. To overcome these obstacles and achieve specific targeting of the tumor microenvironment, Ad was coated with the pH-sensitive block copolymer, methoxy poly(ethylene glycol)-b-poly(l-histidine-co-l-phenylalanine) (PEGbPHF). The physicochemical properties of the generated nanocomplex, Ad/PEGbPHF, were assessed.

View Article and Find Full Text PDF

Adenovirus (Ad) vectors show promise as cancer gene therapy delivery vehicles, but immunogenic safety concerns and coxsackie and adenovirus receptor (CAR)-dependency have limited their use. Alternately, biocompatible and bioreducible nonviral vectors, including arginine-grafted cationic polymers, have been shown to deliver nucleic acids through a cell penetration peptide (CPP) and protein transduction domain (PTD) effect. We utilized the advantages of both viral and nonviral vectors to develop a hybrid gene delivery vehicle by coating Ad with mPEG-PEI-g-Arg-S-S-Arg-g-PEI-mPEG (Ad/PPSA).

View Article and Find Full Text PDF