SMYD1, a striated muscle-specific lysine methyltransferase, was originally shown to play a key role in embryonic cardiac development but more recently we demonstrated that loss of Smyd1 in the murine adult heart leads to cardiac hypertrophy and failure. However, the effects of SMYD1 overexpression in the heart and its molecular function in the cardiomyocyte in response to ischemic stress are unknown. In this study, we show that inducible, cardiomyocyte-specific overexpression of SMYD1a in mice protects the heart from ischemic injury as seen by a > 50% reduction in infarct size and decreased myocyte cell death.
View Article and Find Full Text PDFSmyd1, a muscle-specific histone methyltransferase, has established roles in skeletal and cardiac muscle development, but its role in the adult heart remains poorly understood. Our prior work demonstrated that cardiac-specific deletion of Smyd1 in adult mice (Smyd1-KO) leads to hypertrophy and heart failure. Here we show that down-regulation of mitochondrial energetics is an early event in these Smyd1-KO mice preceding the onset of structural abnormalities.
View Article and Find Full Text PDF