Introduction: The inhibition of melanoma adhesion through adhesion molecules, such as integrins and E-cadherin, may represent a promising strategy for managing melanoma metastasis. Compounds, namely l-kynurenine (L-kyn) and quinolinic acid (Quin), previously displayed anti-cancer effects at half-maximal inhibitory concentration (IC) against B16 F10 melanoma cells in vitro. However, the role of these compounds in B16 F10 melanoma cell adhesion, migration and apoptosis remain unknown.
View Article and Find Full Text PDFCancer is the second leading cause of mortality worldwide. The development of anticancer therapy plays a crucial role in mitigating tumour progression and metastasis. Epithelioid hemangioendothelioma is a very rare cancer, however, with a high systemic involvement.
View Article and Find Full Text PDFCTCE-9908, a CXC chemokine receptor 4 (CXCR4) antagonist, prevents CXCR4 phosphorylation and inhibits the interaction with chemokine ligand 12 (CXCL12) and downstream signalling pathways associated with metastasis. This study evaluated the in vitro effects of CTCE-9908 on B16 F10 melanoma cells with the use of mathematical modelling. Crystal violet staining was used to construct a mathematical model of CTCE-9908 B16 F10 (melanoma) and RAW 264.
View Article and Find Full Text PDFMelanoma is an aggressive malignancy and remains a major cause of skin cancer mortality, highlighting the need for new treatment strategies. Recent findings revealed that L-kynurenine and quinolinic acid induce cytotoxicity and morphological changes in B16 F10 melanoma cells in vitro. This paper highlights the effects of L-kynurenine and quinolinic acid at previously determined half-maximal inhibitory concentrations on cell cycle progression, cell death and extracellular signal-regulated protein kinase inhibition.
View Article and Find Full Text PDFThe Fynbos biome, Western Cape Province, South Africa, produces a unique honey from . The bioactivity of Fynbos (FB1-FB6) honeys and Manuka, unique manuka factor 15+ (MAN UMF15+) honey subjected to simulated digestion, was compared. The effect of each phase of digestion on the antioxidant properties and nitric oxide- (NO-) associated immunomodulatory effects was determined.
View Article and Find Full Text PDFThe metastatic behavior of melanoma has accentuated the need for specific therapy targets. Compounds, namely l-kynurenine ( l-kyn), quinolinic acid (Quin), and kynurenic acid (KA) previously displayed antiproliferative and cytotoxic effects in vitro against cancer cells. Despite the growing interest in these compounds there are limited studies examining the in vitro effects on melanoma.
View Article and Find Full Text PDFIntroduction: The activation of the kynurenine pathway in cancer progression and metastasis through immunomodulatory pathways has drawn attention to the potential for kynurenine pathway inhibition. The activation of the kynurenine pathway, which results in the production of kynurenine metabolites through the degradation of tryptophan, promotes the development of intrinsically malignant properties in cancer cells while facilitating tumour immune escape. In addition, kynurenine metabolites act as biologically active substances to promote cancer development and metastasis.
View Article and Find Full Text PDFBackground: Cutaneous melanoma is a relentless form of cancer which continues to rise in incidence. Currently, cutaneous melanoma is the leading cause of skin cancer-related mortality, which can mainly be attributed to its metastatic potential. The activation of chemokine axes is a major contributor to melanoma metastasis through its involvement in promoting tumour cell migration, proliferation, survival, and adhesion.
View Article and Find Full Text PDFCancer is the second leading cause of mortality worldwide. Skin cancer is the most common cancer in South Africa with nearly 20,000 reported cases every year and 700 deaths. If diagnosed early, the 5-year survival rate is about 90%, however, when diagnosed late, the 5-year survival rate decreases to about 20%.
View Article and Find Full Text PDFAntibacterial activity of honey is due to the presence of methylglyoxal (MGO), H2O2, bee defensin as well as polyphenols. High MGO levels in manuka honey are the main source of antibacterial activity. Manuka honey has been reported to reduce the swarming and swimming motility of Pseudomonas aeruginosa due to de-flagellation.
View Article and Find Full Text PDF