J Phys Condens Matter
November 2024
Investigating two-dimensional (2D) valleytronic materials opens a new chapter in physics and facilitates the emergence of pioneering technologies. Nevertheless, this nascent field faces substantial challenges, primarily attributed to the inherent issue of valley energy degeneracy and the manipulation of valley properties. To break these constraints, the application of external fields has become pivotal for both generating and manipulating the valley properties of 2D systems.
View Article and Find Full Text PDFLow-dimensional ferroelectric tunnel junctions are appealing for the realization of nanoscale nonvolatile memory devices due to their inherent advantages of device miniaturization. Those based on current mechanisms have limitations, including low tunneling electroresistance (TER) effects and complex heterostructures. Here, we introduce an entirely new TER mechanism to construct a nanotube ferroelectric tunnel junction with ferroelectric nanotubes as the tunneling region.
View Article and Find Full Text PDFIn condensed matter physics, oxide materials show various intriguing physical properties. Therefore, many efforts are made in this field to develop functional oxides. Due to the excellent potential for tin-based perovskite oxides, an expansion of new related functional compounds is crucial.
View Article and Find Full Text PDFEpitaxial growth is of significant importance over the past decades, given it has been the key process of modern technology for delivering high-quality thin films. For conventional heteroepitaxy, the selection of proper single crystal substrates not only facilitates the integration of different materials but also fulfills interface and strain engineering upon a wide spectrum of functionalities. Nevertheless, the lattice structure, regularity and crystalline orientation are determined once a specific substrate is chosen.
View Article and Find Full Text PDFSpin-orbit coupling (SOC) plays an important role in condensed matter physics and has potential applications in spintronics devices. In this paper, we study the electronic properties of ferroelectric CuInPS(CIPS) monolayer through first-principles calculations. The result shows that CIPS monolayer is a potential for valleytronics material and we find that the in-plane helical and nonhelical pseudospin texture are induced by the Rashba and Dresselhaus effect, respectively.
View Article and Find Full Text PDFAmong the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain.
View Article and Find Full Text PDFMultiferroics-materials that exhibit coupled ferroic orders-are considered to be one of the most promising candidate material systems for next-generation spintronics, memory, low-power nanoelectronics and so on. To advance potential applications, approaches that lead to persistent and extremely fast functional property changes are in demand. Herein, it is revealed that the phase transition and the correlated ferroic orders in multiferroic BiFeO (BFO) can be modulated via illumination of single short/ultrashort light pulses.
View Article and Find Full Text PDF