Purpose: The objective of this study is to elucidate the sensitizing effect of mesoporous silica nanoparticles (MSNs) on shear wave elastography (SWE) and to investigate the potential application of MSNs as a sensitizer to enhance the sensitivity of SWE in the diagnosis of metabolic-associated steatohepatitis (MASH).
Materials And Methods: The in vitro gelatin models with varying ratios were assessed using SWE to identify the gelatin ratio that most closely approximates with human liver stiffness. Following the characterization of the dispersion properties of MSNs, in vitro models incorporating MSNs of different particle sizes were developed.
Purpose: This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.
Methods: An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs.