The high-performance Y6-based nonfullerene acceptors (NFAs) feature a C-shaped A-DA'D-A-type molecular architecture with a central electron-deficient thiadiazole (Tz) A' unit. In this work, we designed and synthesized a new A-D-A-type NFA, termed CB16, having a C-shaped -benzodipyrrole-based skeleton of Y6 but with the Tz unit eliminated. When processed with nonhalogenated xylene without using any additives, the binary PM6:CB16 devices display a remarkable power conversion efficiency (PCE) of 18.
View Article and Find Full Text PDFIn this study, a fluorescent (FL) aptasensor was developed for on-site detection of live (S.T.) and (V.
View Article and Find Full Text PDFA pair of composite probes based on aptamer modified polyhedral oligomeric silsesquioxane-perovskite quantum dots (POSS-PQDs-Apt) as signal probe and titanium carbide (TiC) MXenes as quencher were prepared for the first time. They were employed to fabricate one turn-on-type aptasensor relying on fluorescence resonance energy transfer (FRET) for Vibrio parahaemolyticus (VP) determination. The POSS-PQDs-Apt can be adsorbed on the MXenes nanosheets, and its fluorescence was quenched due to the FRET.
View Article and Find Full Text PDFMulticolor fluorescence probes can show fluorescence of different colors when detecting different targets, and the excellent feature can create a highly differentiated multicolor sensing platform. However, most of the previously reported multicolor luminescent materials usually suffer from high toxicity and photobleaching, complex preparation procedures, and poor water solubility, which may not be conducive to bioanalytical applications. Two-dimensional metal organic frameworks (2D MOFs), which have large specific surface areas with long-range fluorescence quenching coupled with biomolecular recognition events, have encouraged innovation in biomolecular probing.
View Article and Find Full Text PDF