Publications by authors named "Junchai Zhao"

In medical field, light-weight, superelastic, and super-absorbing aerogels are highly desired for sensitive wounds with persistent exudations. Up to now, superelastic PU porous dressings are commonly employed, which impose environmental concerns both in their preparation and in their pollution after usage. Herein, carboxymethyl cellulose (CMC) was used to construct hierarchical aerogels via a dual-crosslinking and porogen leaching method.

View Article and Find Full Text PDF

Recyclable and degradable supercapacitors have promising applications for a sustainable energy storage industry. Herein, we prepare a dual-physical crosslinking (DP) carboxymethyl cellulose (CMC) hydrogel with high-toughness, healability, and electric conductivity by integrating abundant ions into the matrix. The prepared hydrogel displays a maximum compressive fracture stress of 4.

View Article and Find Full Text PDF

Herein, a facile method to fabricate hierarchical super-elastic (SE) sponge using a water-soluble cellulose derivative, carboxymethyl cellulose (CMC), is reported. The method includes ice templating and porogen leaching steps which facilitate to generate macro-sized pores as well as pore wall structures that can dissipate stress effectively. By controlling the porogen content, the specific surface area and the morphology of the sponges can be tuned.

View Article and Find Full Text PDF

Background: In the past decades, ever-increasing fertilizer use has led to a continuous increase in agricultural output. However, serious waste of resources occurs because of the low utilization of fertilizers. Polyaspartic acid (PASP) is a biodegradable polymer that can be used as a fertilizer synergist in agricultural production to improve the nutrient utilization capacity of plants.

View Article and Find Full Text PDF

Here, a facile method to fabricate cellulose nanocrystals (CNCs) with high yield from microcrystalline cellulose (MCC) at room temperature (RT) is achieved by using a new solvent system of zinc chloride (ZnCl) and a little amount of hydrochloric acid (HCl). Compared with sulphuric acid hydrolysis process, about one-fifth mole of acid is used for per gram of CNCs in our protocol. CNCs with rod-like morphology are regenerated with a maximum yield of 35.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) with different polymorphs CNC I and II were fabricated from native and mercerized microcrystalline cellulose (MCC) by sulfuric acid hydrolysis. CNC I and II were successfully acetylated by a "green" method, which was performed in an ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF). X-ray diffraction (XRD) proved that the crystal structure of CNC I and II was maintained after acetylation.

View Article and Find Full Text PDF

Time-resolved simultaneous synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) technique was used to investigate the phase transitions in prequenched mesomorphic isotactic polypropylene (iPP) samples during heating and annealing processes, respectively. For the heating process, it is shown that the mesomorphic-to-monoclinic phase transition is relatively faster for the mesomorphic iPP sample obtained with the high quenching rate than that with the low quenching rate. For the former, the stability of α-monoclinic crystals formed during heating is relatively higher.

View Article and Find Full Text PDF

The ionic liquid of 1-allyl-3-methylimidazolium chloride ([amim]Cl) was used as the good solvent to dissolve celluloses. Cellulose concentration covers the range of 0.1-3.

View Article and Find Full Text PDF

The surface topography of thin diblock copolymer films is studied by atomic force microscopy (AFM). With AFM an island-to-ribbon transition is observed for symmetric polystyrene-b-poly (4-vinylpyridine) (PS-b-P4VP) on mica with increasing solution concentration. Our study also demonstrates how the formation of the pattern strongly depends on the copolymer composition based on the volume fraction.

View Article and Find Full Text PDF