Publications by authors named "Junbing Yang"

In this paper we report on a kinetics study of the discharge process and its relationship to the charge overpotential in a Li-O2 cell for large surface area cathode material. The kinetics study reveals evidence for a first-order disproportionation reaction during discharge from an oxygen-rich Li2O2 component with superoxide-like character to a Li2O2 component. The oxygen-rich superoxide-like component has a much smaller potential during charge (3.

View Article and Find Full Text PDF

We report on the use of a petroleum coke-based activated carbon (AC) with very high surface area for a Li-O(2) battery cathode without the use of any additional metal catalysts. Electrochemical measurement in a tetra(ethylene) glycol dimethyl ether-lithium triflate (TEGDME-LiCF(3)SO(3)) electrolyte results in two voltage plateaus during charging at 3.2-3.

View Article and Find Full Text PDF

The electrocatalytic site FeN4, which is active towards the oxygen reduction reaction, is incorporated into the graphene layer of aligned carbon nanotubes prepared through a chemical vapour deposition process, as is confirmed by X-ray absorption spectroscopy and other characterization techniques.

View Article and Find Full Text PDF

One of the critical aspects of nanotechnology is to assemble different nanoscale components into a single system. In such a multicomponent system, the overall functionality depends strongly on the precise location and structural characteristics of each of the constituent components. In this context, we have prepared multicomponent micropatterns of silica particles interposed within the discrete areas of aligned multiwall carbon nanotubes.

View Article and Find Full Text PDF

The pore microstructures in two viscouse rayon-based ACF samples were characterized by nitrogen adsorption and HRTEM. For TEM, a two-dimensional fast Fourier transform (FFT) of the original TEM images was performed, and pores in different size ranges were extracted by the inverse FFT (IFFT) operation. The surface fractal dimensions of the samples were evaluated by using both N(2) adsorption and TEM image analysis.

View Article and Find Full Text PDF