Understanding protein structure and kinetics under physiological conditions is crucial for elucidating complex biological processes. While time-resolved (TR) techniques have advanced to track molecular actions, their practical application in biological reactions is often confined to reversible photoreactions within limited experimental parameters due to inefficient sample utilization and inflexibility of experimental setups. Here, we introduce serial X-ray liquidography (SXL), a technique that combines time-resolved X-ray liquidography with a fixed target of serially arranged microchambers.
View Article and Find Full Text PDFHere, we introduce the nanoparticle-aided cryo-electron microscopy sampling (NACS) method to access the conformational distribution of a protein molecule. Two nanogold particles are labeled at two target sites, and the interparticle distance is measured as a structural parameter via cryo-electron microscopy (cryo-EM). The key aspect of NACS is that the projected distance information instead of the global conformational information is extracted from each protein molecule.
View Article and Find Full Text PDFUltrafast motion of molecules, particularly the coherent motion, has been intensively investigated as a key factor guiding the reaction pathways. Recently, X-ray free-electron lasers (XFELs) have been utilized to elucidate the ultrafast motion of molecules. However, the studies on proteins using XFELs have been typically limited to the crystalline phase, and proteins in solution have rarely been investigated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2020
One of the most challenging tasks in biological science is to understand how a protein folds. In theoretical studies, the hypothesis adopting a funnel-like free-energy landscape has been recognized as a prominent scheme for explaining protein folding in views of both internal energy and conformational heterogeneity of a protein. Despite numerous experimental efforts, however, comprehensively studying protein folding with respect to its global conformational changes in conjunction with the heterogeneity has been elusive.
View Article and Find Full Text PDFThe photochemical reaction pathways of CHBr in solution were unveiled using two complementary X-ray techniques, time-resolved X-ray solution scattering (TRXSS) and X-ray transient absorption spectroscopy, in a wide temporal range from 100 ps to tens of microseconds. By performing comparative measurements in protic (methanol) and aprotic (methylcyclohexane) solvents, we found that the reaction pathways depend significantly on the solvent properties. In methanol, the major photoproducts are CHOCHBr and HBr generated by rapid solvolysis of CHBr-Br, an isomer of CHBr.
View Article and Find Full Text PDFPhotoactive yellow protein (PYP) induces negative phototaxis in Halorhodospira halophila via photoactivation triggered by light-mediated chromophore isomerization. Chromophore isomerization proceeds via a volume-conserving isomerization mechanism due to the hydrogen-bond network and steric constraints inside the protein, and causes significant conformational changes accompanied by N-terminal protrusion. However, it is unclear how the structural change of the chromophore affects the remote N-terminal domain.
View Article and Find Full Text PDFThe [Au(CN)2 (-)]3 trimer in water experiences a strong van der Waals interaction between the d(10) gold atoms due to large relativistic effect and can serve as an excellent model system to study the bond formation process in real time. The trimer in the ground state (S0) exists as a bent structure without the covalent bond between the gold atoms, and upon the laser excitation, one electron in the antibonding orbital goes to the bonding orbital, thereby inducing the formation of a covalent bond between gold atoms. This process has been studied by various time-resolved techniques, and most of the interpretation on the structure and dynamics converge except that the structure of the first intermediate (S1) has been debated due to different interpretations between femtosecond optical spectroscopy and femtosecond X-ray solution scattering.
View Article and Find Full Text PDFThe making and breaking of atomic bonds are essential processes in chemical reactions. Although the ultrafast dynamics of bond breaking have been studied intensively using time-resolved techniques, it is very difficult to study the structural dynamics of bond making, mainly because of its bimolecular nature. It is especially difficult to initiate and follow diffusion-limited bond formation in solution with ultrahigh time resolution.
View Article and Find Full Text PDFHere we report sub-100-ps structural dynamics of horse heart myoglobin revealed by time-resolved X-ray solution scattering. By applying the time-slicing scheme to the measurement and subsequent deconvolution, we investigate the protein structural dynamics that occur faster than the X-ray temporal pulse width of synchrotrons (~100 ps). The singular value decomposition analysis of the experimental data suggests that two structurally distinguishable intermediates are formed within 100 ps.
View Article and Find Full Text PDF