The first step of successful infection by any intracellular pathogen relies on its ability to invade its host cell membrane. However, the detailed structural and molecular understanding underlying lipid membrane modification during pathogenic invasion remains unclear. In this study, we show that a specific Leishmania donovani (LD) protein, KMP-11, forms oligomers that bridge LD and host macrophage (MΦ) membranes.
View Article and Find Full Text PDFCell Surface hydrophobicity is one of the determinant biophysical parameters of bacterial aggregation for being networked to form a biofilm. Phytoconstituent, like vitexin, has long been in use for their antibacterial effect. The present work demonstrates the role of vitexin in modulating Staphylococcus aureus surface hydrophobicity while aggregating to form biofilm and pathogenesis in a host.
View Article and Find Full Text PDFLeishmania donovani, an obligate intracellular parasite, the causative agent of visceral leishmaniasis is known to subvert the host immune system for its own survival. Although the precise mechanism is still unknown, emerging evidences indicate that L. donovani efficiently suppress MHC I mediated antigen presentation, rendering inadequate CD8T cell activation and weakening host defense against parasite.
View Article and Find Full Text PDFBackground: Potential therapeutic benefits of natural phytoconstituents and the emergence of nano-structured drug delivery systems have expanded the scope of enhanced chemotherapy with minimal adverse effects. Various in vivo and in vitro studies have revealed Resveratrol to be a potent anti-carcinogenic agent. Researchers are currently applying the concept of nano-science for enhancing the delivery of phyto-drugs like resveratrol, in order to carry the drug to the affected tissues and organs of cancer patients with much ease and efficiency.
View Article and Find Full Text PDFLeishmania donovani, a protozoan parasite, inflicts the disease Visceral leishmaniasis (VL) Worldwide. The only orally bioavailable drug miltefosine is toxic, whereas liposomal amphotericin B (AmpB) is expensive. Lupeol, a triterpenoid from Sterculia villosa bark, was exhibited immunomodulatory and anti-leishmanial activity in experimental VL.
View Article and Find Full Text PDFBackground: Treatment failure and resistance to the commonly used drugs remains a major obstacle for successful chemotherapy against visceral leishmaniasis (VL). Since the development of novel therapeutics involves exorbitant costs, the effectiveness of the currently available antitrypanosomatid drug suramin has been investigated as an antileishmanial, specifically for VL,in vitro and in animal model experiments.
Methodology/principal: Leishmania donovani promastigotes were treated with suramin and studies were performed to determine the extent and mode of cell mortality, cell cycle arrest and other in vitro parameters.
Virulent (MTB) strains cause cell death of macrophages (MÏ•) inside TB granuloma using a mechanism which is not well understood. Many bacterial systems utilize toxins to induce host cell damage, which occurs along with immune evasion. These toxins often use chameleon sequences to generate an environment-sensitive conformational switch, facilitating the process of infection.
View Article and Find Full Text PDFBiomed Pharmacother
September 2019
Co-ordination between innate and adaptive immunity is a foremost crucial immunological interactions. The interaction is beneficial for the survival of the host against infectious agent and also detrimental for the pathogen during their future encounter. Major cellular components to bridge the gap of innate and adaptive immune system include B cells, varieties of T cell subsets and their interaction with antigen presenting cells.
View Article and Find Full Text PDFCeramide is one of the important cellular components involved in cancer regulation and exerts its pleiotropic role in the protective immune response without exhibiting any adverse effects during malignant neoplasm. Although, the PKCδ-ceramide axis in cancer cells has been an effective target in reduction of cancer, involvement of PKCδ in inducing nephrotoxicity have become a major questionnaire. In the present study, we have elucidated the mechanism by which cisplatin exploits the ceramide to render cancer cell apoptosis leading to the abrogation of malignancy in a PKCδ independent pathway with lesser toxicity.
View Article and Find Full Text PDFGenomic instability resulting from oxidative stress responses may be traced to chromosomal aberration. Oxidative stress suggests an imbalance between the systemic manifestation of reactive free radicals and biological system's ability to repair resulting DNA damage and chromosomal aberration. Bacterial infection associated insult is considered as one of the major factors leading to such stress conditions.
View Article and Find Full Text PDFNOD like receptors (NLR) are essential pathogen associated molecular pattern receptors of cytoplasmic origin. During several intracellular parasitic infections NLR played vital role for host protective immune response against the pathogen. Amongst various classes of NLR, NOD1 and NOD2 had been extensively studied and were found to be the most active member of the NLR family.
View Article and Find Full Text PDFAlthough significant efforts have been devoted to develop nanoparticle-based biopharmaceuticals, it is not understood how protein conformation and nanoparticle surface modulate each other in optimizing the activity and/or toxicity of the biological molecules. This is particularly important for a protein, which can adopt different conformational states separated by a relatively small energy barrier. In this paper, we have studied nanoparticle binding-induced conformational switch from β-sheet to α-helix of MPT63, a small major secreted protein from Mycobacterium tuberculosis and a drug target against Tuberculosis.
View Article and Find Full Text PDFDUSP4, an inducible protein has a substrate specificity toward ERK1/2, a component of MAP kinase which is enhanced during Leishmania infection. The DUSP4 mice show increased susceptibility towards the infection caused by Toxoplasma gondii and Leishmania mexicana. These observations emphatically established the fact that unlike DUSP1, DUSP4 has host protective role.
View Article and Find Full Text PDFVisceral leishmaniasis (VL) is one of the most severe forms of leishmaniasis, caused by the protozoan parasite Leishmania donovani. Nowadays there is a growing interest in the therapeutic use of natural products to treat parasitic diseases. Sterculia villosa is an ethnomedicinally important plant.
View Article and Find Full Text PDFLeishmania donovani resides within the host macrophages by dampening host defence mechanisms and thereby it modulates the host cell functions for its survival. Multiple host cell factors compete during the interplay between the host and the parasite. Roles for dual-specificity phosphatases (DUSPs) are implicated in various pathological conditions.
View Article and Find Full Text PDFMycobacterium tuberculosis infection inflicts the disease Tuberculosis (TB), which is fatal if left untreated. During M. tuberculosis infection, the pathogen modulates TLR-4 receptor down-stream signaling, indicating the possible involvement of TLR-4 in the regulation of the host immune response.
View Article and Find Full Text PDFEmergence of drug resistance during visceral leishmaniasis (VL) is a major obstacle imposed during successful therapy. An effective vaccine strategy against this disease is therefore necessary. Our present study exploited the SLA (soluble leishmanial antigen) and PGN (peptidoglycan) stimulated bone marrow-derived dendritic cells (DCs) as a suitable vaccine candidate during experimental VL.
View Article and Find Full Text PDF