Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.
View Article and Find Full Text PDFChemotherapy is still one of the major approaches in triple-negative breast cancer (TNBC) treatment. The development of new formulations for classic chemotherapeutic drugs remains interests in studies. Camptothecin (CPT) is powerful antitumor agents in TNBC treatment though its clinic applications are limited by its low water solubility and systemic toxicity.
View Article and Find Full Text PDFOsteosarcoma tissues demonstrated elevated expression of proteins (FDX1 and DLAT) integral to cuproptosis in our preliminary study, indicating the potential effectiveness of anti-tumor strategies predicated on this process. Nevertheless, the overexpression of copper export proteins and the challenge of copper ion penetration may contribute to insufficient local copper ion concentration for inducing cuproptosis. Herein, we engineered a biomimetic copper-elesclomol-polyphenol network for the efficient delivery of copper ions and the copper ionophore elesclomol.
View Article and Find Full Text PDFThis study aimed to construct an ischemic cardiomyocyte-targeted and ROS-responsive drug release system to reduce myocardial ischemia-reperfusion injury (MI/RI). We constructed thioketal (TK) and cardiac homing peptide (CHP) dual-modified liposomes loaded with puerarin (PUE@TK/CHP-L), which were expected to deliver drugs precisely into ischemic cardiomyocytes and release drugs in response to the presence of high intracellular ROS levels. The advantages of PUE@TK/CHP-L were assessed by cellular pharmacodynamics, fluorescence imaging and animal pharmacodynamics.
View Article and Find Full Text PDFPurpose: Mitochondrial damage may lead to uncontrolled oxidative stress and massive apoptosis, and thus plays a pivotal role in the pathological processes of myocardial ischemia-reperfusion (I/R) injury. However, it is difficult for the drugs such as puerarin (PUE) to reach the mitochondrial lesion due to lack of targeting ability, which seriously affects the expected efficacy of drug therapy for myocardial I/R injury.
Methods: We prepared triphenylphosphonium (TPP) cations and ischemic myocardium-targeting peptide (IMTP) co-modified puerarin-loaded liposomes (PUE@T/I-L), which effectively deliver the drug to mitochondria and improve the effectiveness of PUE in reducing myocardial I/R injury.
Bone metastasis, a prevalent occurrence in primary malignant tumors, is often associated with a grim prognosis. The bone microenvironment comprises various coexisting cell types, working together in a coordinated manner. This dynamic microenvironment plays a pivotal role in the initiation and progression of bone metastases.
View Article and Find Full Text PDFIn the progression of X-ray-based radiotherapy for the treatment of cancer, the incorporation of nanoparticles (NPs) has a transformative impact. This study investigates the potential of NPs, particularly those comprised of high atomic number elements, as radiosensitizers. This aims to optimize localized radiation doses within tumors, thereby maximizing therapeutic efficacy while preserving surrounding tissues.
View Article and Find Full Text PDFAcute pancreatitis (AP) is a common abdominal disease that typically resolves on its own, but the mortality rate dramatically increases when it progresses to severe acute pancreatitis (SAP). In this study, we investigated the molecular mechanism underlying the development of SAP from AP. We utilized two SAP models induced by pancreatic duct ligation and caerulein administration.
View Article and Find Full Text PDFAcute inflammation has the potential for the recruitment of immune cells, inhibiting tumor angiogenesis, metastasis, and drug resistance thereby overcoming the tumor immunosuppressive microenvironment caused by chronic inflammation. Here, an acute inflammation inducer using bacteria outer membrane vesicles (OMVs) loaded in thermal-sensitive hydrogel (named OMVs-gel) for localized and controlled release of OMVs in tumor sites is proposed. OMVs trigger neutrophil recruitment and amplify acute inflammation inside tumor tissues.
View Article and Find Full Text PDFBased on the dye/salts separation efficiency and membrane injury caused by serious pollution of dye/salts wastewater, this study constructed a 2D tight ultrafiltration membrane that could both solve the membrane injury problem and improve the dye/salts separation efficiency, the compatibility of good self-healing performance and penetration performance by 2D material magnesium-aluminum Layered double hydroxide (MgAl-LDH). The self-repairing of physical injury was achieved through the swelling effect of AMPS-PAN, this property was proved by permeate flux, the retention performance of salts in dye/salts solution, the comparison of scanning electron microscope (SEM), and the mechanical strength after physical injury. The healing of chemical injury occured through the reaction of CC and polyethersulfone chain breakage, which was confirmed by X-ray photoelectron spectroscopy (XPS), permeate flux, the retention performance of salts in dye/salts solution, and mechanical property.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) aggregates called Lewy bodies leading to the gradual loss of dopaminergic (DA) neurons in the substantia nigra. Although α-syn expression can be attenuated by antisense oligonucleotides (ASOs) and heteroduplex oligonucleotide (HDO) by intracerebroventricular (ICV) injection, the challenge to peripheral targeted delivery of oligonucleotide safely and effectively into DA neurons remains unresolved. Here, we designed a new DNA/DNA double-stranded (complementary DNA, coDNA) molecule with cholesterol conjugation (Chol-HDO (coDNA)) based on an α-syn-ASO sequence and evaluated its silence efficiency.
View Article and Find Full Text PDFAcute myocardial infarction, characterized by high morbidity and mortality, has now become a serious health hazard for human beings. Conventional surgical interventions to restore blood flow can rapidly relieve acute myocardial ischemia, but the ensuing myocardial ischemia-reperfusion injury (MI/RI) and subsequent heart failure have become medical challenges that researchers have been trying to overcome. The pathogenesis of MI/RI involves several mechanisms, including overproduction of reactive oxygen species, abnormal mitochondrial function, calcium overload, and other factors that induce cell death and inflammatory responses.
View Article and Find Full Text PDFImmunotherapy has been emerging as a powerful strategy for cancer management. Recently, accumulating evidence has demonstrated that bacteria-based immunotherapy including naive bacteria, bacterial components, and bacterial derivatives, can modulate immune response various cellular and molecular pathways. The key mechanisms of bacterial antitumor immunity include inducing immune cells to kill tumor cells directly or reverse the immunosuppressive microenvironment.
View Article and Find Full Text PDFDue to triple-negative breast cancer (TNBC) lacking specific targets for efficient therapies, nanoparticles have been widely developed to enhance efficacy and reduce the toxicity of chemotherapeutics. We prepared unique liposomes containing PTX and DOX by microfluidics-based coaxial electrostatic spray method, which have a uniform particle size, high drug loading capacity, and good stability. Meanwhile, the cRGD peptide was fused with the lipid membrane to form PTX/DOX@cRGD-Lipo, which played a GPS role in locating tumor neovascularization and further targeting TNBC cells where both overexpress αβ.
View Article and Find Full Text PDFBased on the inhibition of mitochondrial permeability transition pore (mPTP) opening, puerarin (PUE) has a good potential to reduce myocardial ischemia/reperfusion injury (MI/RI). However, the lack of targeting of free PUE makes it difficult to reach the mitochondria. In this paper, we constructed matrix metalloproteinase-targeting peptide (MMP-TP) and triphenylphosphonium (TPP) cation co-modified liposomes loaded with PUE (PUE@T/M-L) for mitochondria-targeted drug delivery.
View Article and Find Full Text PDFBackground: Syringomyelia is a chronic, progressive disease of the spinal cord. Syringomyelia is an etiologically diverse affliction caused by disturbance of normal cerebrospinal fluid flow dynamics. Lesions are characterized by the formation of tubular cavities in the gray matter of the spinal cord and gliosis; however, the etiology is unknown and treatment methods differ.
View Article and Find Full Text PDFContext: The σ-hole, counterintuitive σ-hole, and lone pair-π interaction complexes formed between three heterocyclic compounds (C4H4O, C5H5N, and C4H4N2) and AtX (X = F, Cl, and Br) have been investigated with the MP2/aug-cc-pVTZ. The intensity of three noncovalent interactions formed by different heterocyclic compounds was compared, and the properties of these three noncovalent interactions were discussed. SAPT analysis shows that the electrostatic energy is dominant to the stronger interactions in the σ-hole and counterintuitive σ-hole complexes, while the dispersion energy is the main force responsible for the weaker interactions in the lone pair-π complexes.
View Article and Find Full Text PDFBackground: β-Secretase (BACE1) is the vital enzyme in the pathogenic processes of Alzheimer's disease (AD). However, the development of a powerful tool with sensitivity for BACE1 determination in vivo is a challenge.
Methods: A novel NIR fluorescent probe HBAE was synthetized from 2-hydroxy-3-methylbenzaldehyde and 2-amino-benzenethiol by 5 steps.
Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells.
View Article and Find Full Text PDFExtracellular vesicles (EVs) have emerged as promising candidates for multiple biomedical applications. Major types of EVs include exosomes, microvesicles, and apoptotic bodies (ABs). ABs are conferred most properties from parent cells in the final stages of apoptosis.
View Article and Find Full Text PDFObjective: This study investigated the use and effectiveness of endoscopic transnasal, transsphenoidal surgery, a minimally invasive method for the treatment of macroadenomas and giant pituitary a denomas, in a medical setting. The surgical results of 429 patients who received neuroendoscopic treatment of macroadenomas or giant pituitary adenomas were evaluated, and the experiences and lessons learned from treatment complications were assessed.
Patients And Methods: From January 2012 to December 2021, 429 patients with macroadenomas or giant pituitary adenomas, including 60 patients with giant adenomas (diameter ≥4 cm) and 369 patients with macroadenomas (diameter 1-4 cm), received a 3D head CT, a MRI with contrast enhancement, and an endocrinology examination prior to surgery.
Bacterial outer membrane vesicles (OMVs) are potent immuno-stimulating agents and have the potentials to be bioengineered as platforms for antitumor nanomedicine. In this study, OMVs are demonstrated as promising antitumor therapeutics. OMVs can lead to beneficial M2-to-M1 polarization of macrophages and induce pyroptosis to enhance antitumor immunity, but the therapeutic window of OMVs is narrow for its toxicity.
View Article and Find Full Text PDFBackground: In the surgical approach to treat deep-seated intracranial lesions, endoscopes can be used to assist microsurgical operations and improve outcomes. This technique is often called endoscope-assisted microneurosurgery (EAM). This systematic review and meta-analysis aimed to evaluate the feasibility, safety, and effectiveness of EAM.
View Article and Find Full Text PDFIn-situ coal bio-gasification can be defined as one of the coal bio-mining methodology that fully utilizes the methanogenic bacteria in coal to review the current findings, namely anaerobic digestion of organic components. The following experiment has been done in regards, one vertical well and one multi-branch horizontal well were used as experiment wells and two vertical wells were used as control wells, the pilot test was carried out with single well nutrition injection method. By applying the above mentioned method, the concentration of Cl ion and number altered in spp.
View Article and Find Full Text PDF