Publications by authors named "JunQi Zhang"

The CRISPR/Cas9 gene-editing technology, derived from the adaptive immune mechanisms of bacteria, has demonstrated remarkable advantages in fields such as gene function research and the treatment of genetic diseases due to its simplicity in design, precise targeting, and ease of use. Despite challenges such as off-target effects and cytotoxicity, effective spatiotemporal control strategies have been achieved for the CRISPR/Cas9 system through precise regulation of Cas9 protein activity as well as engineering of guide RNAs (gRNAs). This review provides a comprehensive analysis of the core components and functional mechanisms underlying the CRISPR/Cas9 system, highlights recent advancements in spatiotemporal control strategies, and discusses future directions for development.

View Article and Find Full Text PDF

Background Context: Hybrid surgery (HS), which involves both anterior cervical discectomy and fusion (ACDF) and cervical disc replacement (ACDR), is increasingly used to treat multilevel cervical disc degenerative disease, yielding satisfactory clinical outcomes. Early fusion is critical after anterior cervical fusion surgeries, but there are no studies comparing the rate of early fusion of HS with that of ACDF.

Purpose: The purpose of this study was to compare the rate of early fusion (3-6 months postoperatively) of two-level HS with that of two-level ACDF surgery.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) mediated caspases-4 (humans) and caspase-11 (rodent) (caspase-4/11) signaling can cause maturation of inflammatory cytokine IL-1β and cellular pyroptosis in the macrophages through guanylate-binding proteins (GBPs). However, how caspase-4/11s bind with GBPs together to activate caspase-4/11 by LPS remains elusive. We here found that BA derivatives from gut microbiota can regulate sensitivity of macrophages to LPS and Gram-negative bacteria through .

View Article and Find Full Text PDF

Marburg virus (MARV) is a zoonotic virus that can infect humans and non-human primates (NHPs) and lead to a fatal Marburg hemorrhagic fever (MHF), while there is no approved vaccine or antiviral treatment for MHF. The nucleic acid vaccine has unique advantages, including fast and simple preparation, easy to follow the virus mutation situation, and less adverse reactions. Therefore, we constructed the DNA and mRNA candidate vaccines based on codon-optimized MARV glycoprotein sequence, and evaluated the immune effect in mice through ELISA, ELISpot, and Flow cytometry.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the main pathogens that cause acute gastroenteritis and lead to huge economic losses annually. Due to the lack of suitable culture systems, the pathogenesis of HuNoVs and the development of vaccines and drugs have progressed slowly. Although researchers have employed various methods to culture HuNoVs in vitro in the last century, problems relating to the irreducibility, low viral titer, and non-infectiousness of the progeny virus should not be ignored.

View Article and Find Full Text PDF

: Since 2019, the SARS-CoV-2 virus has been responsible for the global spread of respiratory illness. As of 1 September 2024, the cumulative number of infections worldwide exceeded 776 million. There are many structural proteins of the virus, among which the SARS-CoV-2 nucleocapsid (N) protein plays a pivotal role in the viral life cycle, participating in a multitude of essential activities following viral invasion.

View Article and Find Full Text PDF

Introduction: Artificial cervical disc replacement (ACDR) is a widely accepted surgical procedure in the treatment of cervical radiculopathy and myelopathy. However, some research suggests that ACDR may redistribute more load onto the facet joints, potentially leading to postoperative axial pain in certain patients. Earlier studies have indicated that facet tropism is prevalent in the lower cervical spine and can significantly increase facet joint pressure.

View Article and Find Full Text PDF

Background: Artificial Cervical Disc Replacement (ACDR) is an effective treatment for cervical degenerative disc diseases. However, clinical information regarding the facet joint alterations after ACDR was limited. Facet tropism is common in the sub-axial cervical spine.

View Article and Find Full Text PDF
Article Synopsis
  • Hemorrhagic fever with renal syndrome (HFRS) is a serious illness in Eurasia with no specific treatments currently available, highlighting the need for safe and effective vaccines.
  • Researchers developed three types of nucleic acid vaccine candidates (mRNA, naked DNA, and DNA in lipid nanoparticles) targeting the Hantaan virus to assess their potential against HFRS.
  • All vaccine candidates successfully triggered strong immune responses similar to an existing inactivated vaccine, with the mRNA vaccine showing a robust T-helper 1 cell response and the DNA-LNP producing higher neutralizing antibodies, suggesting that combining these vaccines could enhance their effectiveness.
View Article and Find Full Text PDF

Marburg hemorrhagic fever (MHF) is a fatal infectious disease caused by Marburg virus (MARV) infection, and MARV has been identified as a priority pathogen for vaccine development by the WHO. The glycoprotein (GP) of MARV mediates viral adhesion and invasion of host cells and therefore can be used as an effective target for vaccine development. Moreover, DNA vaccines have unique advantages, such as simple construction processes, low production costs, and few adverse reactions, but their immunogenicity may decrease due to the poor absorption rate of plasmids.

View Article and Find Full Text PDF

The CRISPR-Cas12a system has revolutionized nucleic acid testing (NAT) with its rapid and precise capabilities, yet it traditionally required RNA pre-amplification. Here we develop rapid fluorescence and lateral flow NAT assays utilizing a split Cas12a system (SCas12a), consisting of a Cas12a enzyme and a split crRNA. The SCas12a assay enables highly sensitive, amplification-free, and multiplexed detection of miRNAs and long RNAs without complex secondary structures.

View Article and Find Full Text PDF

To investigate how cell elongation impacts extracellular electron transfer (EET) of electroactive microorganisms (EAMs), the division of model EAM Shewanella oneidensis (S. oneidensis) MR-1 is engineered by reducing the formation of cell divisome. Specially, by blocking the translation of division proteins via anti-sense RNAs or expressing division inhibitors, the cellular length and output power density are all increased.

View Article and Find Full Text PDF

Vaccines has long been the focus of antiviral immunotherapy research. Viral epitopes are thought to be useful biomarkers for immunotherapy (both antibody-based and cellular). In this study, we designed a novel vaccine molecule, the Hantaan virus (HTNV) glycoprotein (GP) tandem Th epitope molecule (named the Gnc molecule), in silico.

View Article and Find Full Text PDF

Study Design: A prospective nonrandomized controlled study.

Objective: To compare the clinical and radiographic outcomes of anterior cervical corpectomy and fusion (ACCF) using titanium mesh cages (TMCs), nano-hydroxyapatite/polyamide 66 (n-HA/PA66) cages, and three-dimensional-printed vertebral bodies (3d-VBs).

Background: Postoperative subsidence of TMCs in ACCF has been widely reported.

View Article and Find Full Text PDF
Article Synopsis
  • Leaves are vital for rice growth, serving as sites for photosynthesis, and early leaf senescence can significantly reduce rice yields.
  • Mutations in OsAGO2 lead to premature leaf senescence characterized by reduced chlorophyll and abnormal chloroplast structures.
  • The study reveals that OsAGO2 regulates leaf senescence through DNA methylation of OsNAC300, which, when overexpressed, mimics senescence, indicating a complex regulatory mechanism involving OsAGO2, OsNAC300, and OsNAP.
View Article and Find Full Text PDF

Interfacial electron transfer between electroactive microorganisms (EAMs) and electrodes underlies a wide range of bio-electrochemical systems with diverse applications. However, the electron transfer rate at the biotic-electrode interface remains low due to high transmembrane and cell-electrode interfacial electron transfer resistance. Herein, a modular engineering strategy is adopted to construct a Shewanella oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel-electropolymerized anthraquinone to boost cell-electrode interfacial electron transfer.

View Article and Find Full Text PDF

Bone extracellular matrix (ECM) has been shown to mimic aspects of the tissue's complex microenvironment, suggesting its potential role in promoting bone repair. However, current ECM-based therapies suffer from limitations such as inefficient scale-up, lack of mechanical integrity, and sub-optimal efficacy. Here, we fabricated hydrogels from decellularized ECM (dECM) from wild type (WT) and thrombospondin-2 knock-out (TSP2KO) mouse bones.

View Article and Find Full Text PDF
Article Synopsis
  • Mecapegfilgrastim is a medicine approved in China to help cancer patients avoid infections by boosting their white blood cells during chemotherapy.
  • A study looked at 561 patients in China and found that the most common side effect was a slight increase in white blood cells, with very few serious problems.
  • Overall, this medicine worked well to prevent serious drops in white blood cells in patients undergoing different types of chemotherapy.
View Article and Find Full Text PDF

The characteristics of the soft component and the ionic-electronic nature in all-inorganic CsPbIBr perovskite typically lead to a significant number of halide vacancy defects and ions migration, resulting in a reduction in both photovoltaic efficiency and stability. Herein, we present a tailored approach in which both anion-fixation and undercoordinated-Pb passivation are achieved in situ during crystallization by employing a molecule derived from aniline, specifically 2-methoxy-5-trifluoromethylaniline (MFA), to address the above challenges. The incorporation of MFA into the perovskite film results in a pronounced inhibition of ion migration, a significant reduction in trap density, an enhancement in grain size, an extension of charge carrier lifetime, and a more favorable alignment of energy levels.

View Article and Find Full Text PDF
Article Synopsis
  • Emerging evidence highlights the crucial role of a specific subset of CD8 T cells, called CD8CXCR5 T cells, in the development of multiple sclerosis (MS).
  • These cells are found in higher numbers during the acute phase of MS and experimental models, with their presence linked to new lesions in the central nervous system and clinical severity.
  • CD8CXCR5 T cells can activate B cells and boost the production of antibodies associated with the disease, suggesting they may contribute to CNS damage by increasing humoral immune responses.
View Article and Find Full Text PDF

Soil nutrients and inorganic elements affect not only the growth and development of medicinal plants but also the formation and accumulation of active ingredients in traditional Chinese medicines. The content of tanshinones and 28 inorganic elements in Salviae Miltiorrhizae Radix et Rhizoma samples from 18 producing areas in 6 provinces was determined, and 35 physical and chemical properties of the corresponding soil samples were determined. The enrichment characteristics of inorganic elements in Salviae Miltiorrhizae Radix et Rhizoma were analyzed.

View Article and Find Full Text PDF

The greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs), consisting mainly of methane (CH) and nitrous oxide (NO), have been constantly increasing and become a non-negligible contributor towards carbon neutrality. The precise evaluation of plant-specific GHG emissions, however, remains challenging. The current assessment approach is based on the product of influent load and emission factor (EF), of which the latter is quite often a single value with huge uncertainty.

View Article and Find Full Text PDF
Article Synopsis
  • Levofloxacin is a medicine used to treat serious infections in children, but its safety and effectiveness in kids needed more research.
  • The study looked at 25 children under 18 who got levofloxacin in the hospital and found that it worked for many of them.
  • While there were some side effects during treatment, most weren't definitely caused by levofloxacin, which suggests it's safe for use in children.
View Article and Find Full Text PDF

The thiazole-2-imine derivatives with interesting pharmacological activities have attracted significant attention. However, previously reported synthesis strategies usually suffered from some drawbacks, such as the use of metals/additive and harsh reaction conditions. Herein, we developed a metal- and photoinitiator-free photocatalytic strategy for the synthesis of various selenium-substituted thiazole-2-imine derivatives for the first time.

View Article and Find Full Text PDF

The radical relay provides an effective paradigm for intermolecular assembly to achieve functionalization across remote chemical bonds. Herein, we report the first radical relay 1,3-carbocarbonylation of α-carbonyl alkyl bromides across two separate C═C bonds. The reaction is highly chemo- and regioselective, with two C(sp)-C(sp) bonds and one C═O bond formed in a single orchestrated operation.

View Article and Find Full Text PDF