Publications by authors named "JunPyo Kwon"

Nanoconfinements are utilized to program how polymers entangle and disentangle as chain clusters to engineer pseudo bonds with tunable strength, multivalency, and directionality. When amorphous polymers are grafted to nanoparticles that are one magnitude larger in size than individual polymers, programming grafted chain conformations can "synthesize" high-performance nanocomposites with moduli of ≈25GPa and a circular lifecycle without forming and/or breaking chemical bonds. These nanocomposites dissipate external stresses by disentangling and stretching grafted polymers up to ≈98% of their contour length, analogous to that of folded proteins; use both polymers and nanoparticles for load bearing; and exhibit a non-linear dependence on composition throughout the microscopic, nanoscopic, and single-particle levels.

View Article and Find Full Text PDF

The introduction of molecularly woven three-dimensional (3D) covalent organic framework (COF) crystals into polymers of varying types invokes different forms of contact between filler and polymer. Whereas the combination of woven COFs with amorphous and brittle polymethyl methacrylate results in surface interactions, the use of the liquid-crystalline polymer polyimide induces the formation of polymer-COF junctions. These junctions are generated by the threading of polymer chains through the pores of the nanocrystals, thus allowing for spatial arrangement of polymer strands.

View Article and Find Full Text PDF

Nanomaterials must be systematically designed to be technologically viable. Driven by optimizing intermolecular interactions, current designs are too rigid to plug in new chemical functionalities and cannot mitigate condition differences during integration. Despite extensive optimization of building blocks and treatments, accessing nanostructures with the required feature sizes and chemistries is difficult.

View Article and Find Full Text PDF

High capacity polymer dielectrics that operate with high efficiencies under harsh electrification conditions are essential components for advanced electronics and power systems. It is, however, fundamentally challenging to design polymer dielectrics that can reliably withstand demanding temperatures and electric fields, which necessitate the balance of key electronic, electrical and thermal parameters. Herein, we demonstrate that polysulfates, synthesized by sulfur(VI) fluoride exchange (SuFEx) catalysis, another near-perfect click chemistry reaction, serve as high-performing dielectric polymers that overcome such bottlenecks.

View Article and Find Full Text PDF

Electronic waste carries energetic costs and an environmental burden rivaling that of plastic waste due to the rarity and toxicity of the heavy-metal components. Recyclable conductive composites are introduced for printed circuits formulated with polycaprolactone (PCL), conductive fillers, and enzyme/protectant nanoclusters. Circuits can be printed with flexibility (breaking strain ≈80%) and conductivity (≈2.

View Article and Find Full Text PDF

Successfully interfacing enzymes and biomachinery with polymers affords on-demand modification and/or programmable degradation during the manufacture, utilization and disposal of plastics, but requires controlled biocatalysis in solid matrices with macromolecular substrates. Embedding enzyme microparticles speeds up polyester degradation, but compromises host properties and unintentionally accelerates the formation of microplastics with partial polymer degradation. Here we show that by nanoscopically dispersing enzymes with deep active sites, semi-crystalline polyesters can be degraded primarily via chain-end-mediated processive depolymerization with programmable latency and material integrity, akin to polyadenylation-induced messenger RNA decay.

View Article and Find Full Text PDF

Objective: Meniscus tissue is composed of highly aligned type I collagen embedded with cartilaginous matrix. This histological feature endows mechanical properties, such as tensile strength along the direction of the collagen alignment and endurance to compressive load induced by weight bearing. The main objective of this study was to compare the fibrocartilage construction capability of different cell sources in the presence of mechanical stimuli.

View Article and Find Full Text PDF

Currently available conductive inks present a challenge to achieving electrical performance without compromising mechanical properties, scalability, and processability. Here, we have developed blends of carbon black and the commercially available triblock copolymer (BCP), poly(styrene-ethylene-butylene-styrene)--maleic anhydride (SEBS--MAH) (FG1924G, Kraton), that can be readily applied as a conductive coating via a spray-coating process, for a wide range of insulating materials (fabric, wood, glass, and plastic). Simple but effective mechanical and chemical modifications of the ingredients can increase the electrical conductivity (∼100 S/m) by an order of magnitude more than previously reported for carbon black composites; moreover, the coatings display excellent mechanical flexibility (tensile strain ε ∼ 5.

View Article and Find Full Text PDF

Cofilin is one of the most essential regulatory proteins and participates in the process of disassembling actin filaments. Cofilin induces conformational changes to actin filaments, and both the bending and torsional rigidity of the filament. In this study, we investigate the effects of cofilin on the mechanical properties of actin filaments using computational methods.

View Article and Find Full Text PDF

Understanding self-assembling peptides becomes essential in nanotechnology, thereby providing a bottom-up method for fabrication of nanostructures. Diphenylalanine constitutes an outstanding building block that can be assembled into various nanostructures, including two-dimensional bilayers or nanotubes, exhibiting superb mechanical properties. It is known that the effect of the ions is critical in conformational and chemical interactions of bilayers or membranes.

View Article and Find Full Text PDF

Cofilin makes the actin filament flexible and thermally unstable by disassembling the filament and inducing bending and torsional compliance. Actin monomers bound to cofilin are able to chemically and mechanically interact in response to external forces. In this study, we performed two molecular dynamics tensile tests for actin and cofilactin filaments under identical conditions.

View Article and Find Full Text PDF

Spider and silkworm silk proteins have received much attention owing to their inherent structural stability, biodegradability, and biocompatibility. These silk protein materials have various mechanical characteristics such as elastic modulus, ultimate strength and fracture toughness. While the considerable mechanical characteristics of the core crystalline regions of spider silk proteins at the atomistic scale have been investigated through several experimental techniques and computational studies, there is a lack of comparison between spider and silkworm fibroins in the atomistic scale.

View Article and Find Full Text PDF

An actin filament is an essential cytoskeleton protein in a cell. Various proteins bind to actin for cell functions such as migration, division, and shape control. ADF/cofilin is a protein that severs actin filaments and is related to their dynamics.

View Article and Find Full Text PDF