Angew Chem Int Ed Engl
January 2020
Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub-2 nm size and near-unity quantum yield are presented. The spin-orbit coupling (SOC) of heavy-atom-rich organic fluorophores is mitigated through a silane-molecule-mediated condensation/dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot.
View Article and Find Full Text PDFLead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. Ultimately, very narrow processing windows with a relatively large spread in device performance and a considerable lab-to-lab variation result.
View Article and Find Full Text PDFThis study proposed a novel Fano resonance (FR) biosensor with ultrahigh detection sensitivity by integrating two dimensional (2D) hexagonal boron nitride (h-BN) nanosheets with a plasmonic silver film-silicon hybrid nanostructure. Owing to its ultralow-loss in surface plasmon polaritons (SPPs), 2D h-BN nanosheets can act as a planar photon waveguide (PWG) for generating energy level splitting. Notably, both asymmetric FR sharp lines and plasmon induced transparency (PIT) can be produced by modulating the coupling strength between the planar PWG mode provided by h-BN nanosheets and the surface plasmon polariton (SPP) mode in the silver film-silicon hybrid nanostructure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
A new fused-chrysene electron-donating core is synthesized, where chrysene is condensed with two thiophenes via two dihydrobenzene rings. Based on this building block coupled with two electron-accepting end groups of 1,1-dicyanomethylene-3-indanone, a new Z-shaped fused-ring electron acceptor, FCIC, is designed and synthesized. FCIC shows intense absorption in the 500-850 nm region, with a maximum molar absorptivity of 1.
View Article and Find Full Text PDFPhotobiomodulation (PBM) involves light to activate cellular signaling pathways leading to cell proliferation or death. In this work, fluorescence and Coherent anti-Stokes Raman Scattering (CARS) imaging techniques were applied to assess apoptosis in human cervical cancer cells (HeLa) induced by near infrared (NIR) laser light (808 nm). Using the Caspase 3/7 fluorescent probe to identify apoptotic cells, we found that the pro-apoptotic effect is significantly dependent of irradiation dose.
View Article and Find Full Text PDFUnderstanding the mechanisms underlying the diversity of tumor invasion dynamics, including single-cell migration, multicellular streaming, and the emergence of various collective migration patterns, is a long-standing problem in cancer research. Here we have designed and fabricated a series of microchips containing high-throughput microscale tracks using protein repelling coating technology, which were then covered with a thin Matrigel layer. By varying the geometrical confinement (track width) and microenvironment factors (Matrigel concentration), we have reproduced a diversity of collective migration patterns in the chips, which were also observed in vivo.
View Article and Find Full Text PDFIndium selenide (InSe) has attracted tremendous attention due to its favorable electronic features, broad tunable bandgap, high stability and other attractive properties. However, its further applications for nonlinear optics have not yet been fully explored. In this work, we demonstrate that few-layer α-InSe nanosheets exhibit strong saturable absorption properties over a wide wavelength range covering 800, 1064 and 1550 nm.
View Article and Find Full Text PDFEarly diagnosis of malignant skin lesions is critical for prompt treatment and a clinical prognosis of skin cancers. However, it is difficult to precisely evaluate the development stage of nonmelanoma skin cancers because they are derived from the same tissues as a result of the uncontrolled growth of abnormal squamous keratinocytes in the epidermis layer of the skin. In the present study, we developed a linear-kernel support vector machine (LSVM) model to distinguish basal cell carcinoma (BCC) from actinic keratosis (AK) and Bowen's disease (BD).
View Article and Find Full Text PDFPhotosensitizers (PSs) are ideal cancer theranostic drugs that can be administered as both fluorescence imaging reagents and photodynamic therapy (PDT) drugs. To improve the tumoritropic behavior of PSs, nanoliposomes are presently being considered as optimal PSs carriers. Although nanoliposomal PSs have been utilized in clinical therapy, PSs localization and photosensitive processing in nanoliposomal PSs are rarely observed on nanoscale.
View Article and Find Full Text PDFNanocarbons with different dimensions (e.g., 0D fullerenes and carbon nanodots, 1D carbon nanotubes and graphene nanoribbons, 2D graphene and graphene oxides, and 3D nanodiamonds) have attracted enormous interest for applications ranging from electronics, optoelectronics, and photovoltaics to sensing, bioimaging, and therapeutics due to their unique physical and chemical properties.
View Article and Find Full Text PDFA facile solution-phase synthesis of black γ-phase CsPbI3 nanowire clusters was developed using poly(methyl methacrylate) (PMMA) as surfactant. PMMA was found to efficiently retard the crystal growth, thereby inducing anisotropic growth for formation of the nanowire structure, while the intermolecular hydrogen bonds of PMMA act as a driving force for self-assembly of the nanowires.
View Article and Find Full Text PDFWe previously demonstrated that overexpression of tropomyosin receptor kinase A (TrkA) promotes the survival and Schwann cell-like differentiation of bone marrow stromal stem cells in nerve grafts, thereby enhancing the regeneration and functional recovery of the peripheral nerve. In the present study, we investigated the molecular mechanisms underlying the neuroprotective effects of TrkA in bone marrow stromal stem cells seeded into nerve grafts. Bone marrow stromal stem cells from Sprague-Dawley rats were infected with recombinant lentivirus vector expressing rat TrkA, TrkA-shRNA or the respective control.
View Article and Find Full Text PDFCombined phototherapy and immunotherapy demonstrates strong potential in the treatment of metastatic cancers. An upconversion nanoparticle (UCNP) based antigen-capturing nanoplatform is designed to synergize phototherapies and immunotherapy. In particular, this nanoplatform is constructed via self-assembly of DSPE-PEG-maleimide and indocyanine green (ICG) onto UCNPs, followed by loading of the photosensitizer rose bengal (RB).
View Article and Find Full Text PDFLaTaON is a photocatalyst with intense visible light absorption up to 650 nm, but exhibits low H evolution activity owing to uncontrolled facets and high defect densities. In this work, core-shell-structured plate-like LaKNaTaO /LaTaON was synthesized by nitriding a layered perovskite-type LaKNaTaO . The volatilization of K and Na species during the nitridation promoted the rapid transformation of LaKNaTaO into LaTaON along [010] direction with the plate-like shape retained.
View Article and Find Full Text PDFLysosomes, an important organelle of eukaryotic cells, are covered with the cell membrane and contain an array of degradative enzymes. The disrupt in lysosomal functions may lead to the development of severe diseases. In nanotechnology, nanomaterials working mechanism and its biomedical output are highly dependent on the lysosomes as it plays a crucial role in intracellular transport.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2019
Antimonene, an emerging two-dimensional material, has garnered tremendous interest due to its intriguing structure and fascinating electronic properties. However, the synthesis of high-quality few-layer antimonene nanosheets, which can only be produced by exfoliation or epitaxial growth on exotic substrates, has greatly hindered the development of this new field. Herein, few-layer hexagonal and functionalized antimonene nanosheets were successfully prepared from SbCl solutions for the first time by exclusively promoting their anisotropic growth in a colloidal solution.
View Article and Find Full Text PDFLight microscopy can offer certain advantages over electron microscopy in terms of acquiring detailed insights into the biological/intra-cellular milieu. In recent years, with the development of new fluorescence imaging technologies, it has become extremely important to assess the role of designing appropriate fluorophores in acquiring desired biological information without encountering any untoward hitches. Over the years, external fluorophores have been prevalently used in fluorescence microscopy and single-molecule fluorescence microscopy-based studies.
View Article and Find Full Text PDFTwo-photon excited fluorescence (TPEF) plays an important role in bioimaging, the longer excitation wavelength improves its imaging depths, which gives us deeper biological information. Here, we reported the two-photon absorption of a small squaraine dye (SD), and we found that the TPEF of the small SD can be enhanced significantly using albumin, the TPEF of SD in water was enhanced 17.7 times by adding bull serum albumin (BSA) in the solution.
View Article and Find Full Text PDFAs a newly noninvasive emerging modality, NIR-II fluorescence imaging (1000-1700 nm) has many advantages over conventional visible and NIR-I imaging (700-900 nm). Unfortunately, only a few NIR-II fluorophores are suitable for bone imaging. Here, we report an NIR-II fluorophore based on DSPE-mPEG encapsulated rare earth doped nanoparticles (RENPs@DSPE-mPEG), which shows inherent affinity to bone without linking any targeting ligands, and thus, it provides an alternative noninvasive and nonradiation strategy for skeletal system mapping and bone disease diagnoses.
View Article and Find Full Text PDFMetamorphic InAs/InGaAs and InAs/InGaAs quantum dot (QD) arrays are known to be photosensitive in the telecommunication ranges at 1.3 and 1.55 μm, respectively; however, for photonic applications of these nanostructures, the effect of levels related to defects still needs in-depth investigation.
View Article and Find Full Text PDFFluorescence (FL) and X-ray computed tomography (CT) imaging-guided photodynamic therapy (PDT) can provide a powerful theranostic tool to visualize, monitor, and treat cancer and other diseases with enhanced accuracy and efficacy. In this study, clinically approved iodinated CT imaging contrast agent (CTIA) iodixanol and commercially available photosensitizer (PS) meso-tetrakis (4-sulphonatophenyl) porphine (TPPS) were co-encapsulated in biocompatible PEGylated nanoliposomes (NL) for enhanced anticancer PDT guided by bimodal (FL and CT) imaging. The NL co-encapsulation of iodixanol and TPPS (LIT) lead to an increase in singlet oxygen generation by PS via the intraparticle heavy-atom (iodine) effect on PS molecules, as it was confirmed by both direct and indirect measurements of singlet oxygen production.
View Article and Find Full Text PDFThe ever-increasing demand for faster speed, broader bandwidth, and lower energy consumption of on-chip processing has motivated the use of light instead of electrons in functional communication components. However, considerable scattering loss severely affects the performance of nanoscale photonic devices when their physical sizes are smaller than the wavelength of light. Due to the tight localization of electromagnetic energy, plasmonic waveguides that work at visible and infrared wavebands have provided a solution for the optical diffraction limit problem and thus enable downscaling of optical circuits and chips at the nanoscale.
View Article and Find Full Text PDFRed and near-infrared (NIR) light effect on Ca ions flux through the influence on N-methyl-D-aspartate receptors (NMDARs) and their functioning in HeLa cells was studied in vitro. Cells were irradiated by 650 and 808 nm laser light at different power densities and doses and the obtained effect was compared with that caused by the pharmacological agents. The laser light was found to elevate Ca influx into cell cytoplasm in a dose-dependent manner without changes of the NMDAR functioning.
View Article and Find Full Text PDFThe microviscosity change associated with reticulophagy is an important component for studying endoplasmic reticulum (ER) stress disorders. Here, a BODIPY-arsenicate conjugate 1-based fluorescent molecular rotor was designed to covalently bind vicinal dithiol-containing proteins in the ER, exhibiting a bifunction of reticulophagy initiation and microviscosity evaluation. Therefore, we could quantify the local viscosity changes during reticulophagy based on the fluorescence lifetime changes of probe 1.
View Article and Find Full Text PDF