Colistin (COL) is regarded as a last-resort treatment for infections by multidrug-resistant (MDR) Gram-negative bacteria. The emergence of colistin-resistant Enterobacterales poses a significant global public health concern. Our study discovered that niclosamide (NIC) reverses COL resistance in via a checkerboard assay.
View Article and Find Full Text PDFThe increasing incidence of bacterial infections caused by multidrug-resistant (MDR) Gram-negative bacteria has deepened the need for new effective treatments. It has been reported that niclosamide (NIC) can restore the sensitivity of Gram-negative bacteria to colistin (COL). However, NIC is practically insoluble in water and sparingly soluble in organic solvents, leading to limited therapeutic applications.
View Article and Find Full Text PDFThe high-pressure study on zirconium disulfide (ZrS) has been conducted up to ∼33.9 GPa by using synchrotron X-ray diffraction at room temperature and electrical transport measurements, aiming to investigate the pressure-induced structural phase transitions and the metallization of the material. The experiments indicated that a progressive structural evolution occurs as the sequence below: hexagonal (space group (SG): 3̅) → monoclinic (SG: ) started at 2.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
For the first time, an innovative pressure quenching technique is used to create the integrated electrode of the black phosphorus (BP) @TiCT composite material, doing away with the requirement for adhesive additives and simplifying time-consuming processes. Through the formation of Ti-O-P bonds with BP, TiCT MXenes can function as conductive additives and affect the interlayer gap. Additionally, we have found that there is a critical synthetic pressure threshold (300 kN) at which the performance of BP@TiCT-integrated electrodes can be improved: too high of a pressure prevents lithium-ion transport because of mesopore reduction; too low of a pressure prevents Ti-O-P chemical bond formation between the two components; and suboptimal pressure does not allow for density enhancement for better electron conduction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Central nervous system (CNS) infections caused by neurosurgery or intrathecal injection of contaminated cerebrospinal fluid are a common and difficult complication. Drug-delivery microrobots are among the latest solutions proposed for antibacterial applications. However, there is a lack of research into developing microrobots with the ability to sustain antibody delivery while can move efficiently in the CNS.
View Article and Find Full Text PDFThe presence of cancer stem cells (CSCs) contributes significantly to treatment resistance in various cancers, including head and neck squamous cell carcinoma (HNSCC). Despite this, the relationship between cancer stemness and immunity remains poorly understood. In this study, we aimed to identify potential immunotherapeutic targets and sensitive drugs for CSCs in HNSCC.
View Article and Find Full Text PDFMXene usually exhibits weak pseudo-capacitance behavior in aqueous zinc-ion batteries, which cannot provide sufficient reversible capacity, resulting in the decline of overall capacity when used as the cathode materials. Taking inspiration from polymer electrolyte engineering, we have conceptualized an in situ induced growth strategy based on MXene materials. Herein, 5.
View Article and Find Full Text PDFUnlabelled: The appearance and prevalence of multidrug-resistance (MDR) Gram-negative bacteria (GNB) have limited our antibiotic capacity to control bacterial infections. The clinical efficacy of colistin (COL), considered as the "last resort" for treating GNB infections, has been severely hindered by its increased use as well as the emergence and prevalence of mobile colistin resistance (MCR)-mediated acquired drug resistance. Identifying promising compounds to restore antibiotic activity is becoming an effective strategy to alleviate the crisis of increasing MDR.
View Article and Find Full Text PDFIn the field of medical image segmentation, achieving fast and accurate semantic segmentation of tumor cell nuclei and skin lesions is of significant importance. However, the considerable variations in skin lesion forms and cell types pose challenges to attaining high network accuracy and robustness. Additionally, as network depth increases, the growing parameter size and computational complexity make practical implementation difficult.
View Article and Find Full Text PDFMolecular mobility of intracellular water is a crucial parameter in the study of the mechanism of desiccation tolerance. As one of the parameters that reflecting molecular mobility, the viscosity of intracellular water has been found intimately related with the protection of the phospholipid membrane because it quantifies the diffusion ability of water and mass in the intracellular environment. In this work we measured the intracellular water relaxation time, which can be translated into water viscosity, by using a previously established NIR-dielectric method to monitor the drying process of baker's yeast and Jurkat cells with different desiccation tolerance.
View Article and Find Full Text PDFAims: Doxorubicin is a powerful chemotherapeutic agent for cancer, whose use is limited due to its potential cardiotoxicity. Semaglutide (SEMA), a novel analog of glucagon-like peptide-1 (GLP-1), has received widespread attention for the treatment of diabetes. However, increasing evidence has highlighted its potential therapeutic benefits on cardiac function.
View Article and Find Full Text PDFIntroduction: Vehicle re-identification is a crucial task in intelligent transportation systems, presenting enduring challenges. The primary challenge involves the inefficiency of vehicle re-identification, necessitating substantial time for recognition within extensive datasets. A secondary challenge arises from notable image variations of the same vehicle due to differing shooting angles, lighting conditions, and diverse camera equipment, leading to reduced accuracy.
View Article and Find Full Text PDFHow to efficiently activate peroxymonosulfate (PMS) in a complex water matrix to degrade organic pollutants still needs greater efforts, and cobalt-based bimetallic nanomaterials are desirable catalysts. In this paper, sea urchin-like NiCoO nanomaterials were successfully prepared and comprehensively characterized for their structural, morphological and chemical properties via techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), among others. The sea urchin-like NiCoO nanomaterials exhibited remarkable catalytic performance in activating PMS to degrade phenol.
View Article and Find Full Text PDFIn recent years, water pollution has posed a serious threat to aquatic organisms and humans. Advanced oxidation processes (AOPs) based on activated peroxymonosulfate (PMS) show high oxidation, good selectivity, wide pH range and no secondary pollution in the removal of organic pollutants in water. Carbon-based materials are emerging green catalysts that can effectively activate persulfates to generate radical and non-radical active species to degrade organic pollutants.
View Article and Find Full Text PDFBackground: Non-small cell lung cancer (NSCLC) is the most commonly diagnosed solid tumor. Natural killer (NK) cell-based immunotherapy is a promising anti-tumor strategy in various cancers including NSCLC.
Objective: We aimed to investigate the specific mechanisms that regulate the killing effect of NK cells to NSCLC cells.
Ultraviolet lithography is a very promising technology used for the batch fabrication of biomedical microswimmers. However, creating microswimmers that can swim at low Reynolds number using biocompatible materials while retaining strong magnetic properties and excellent biomedical functionality is a great challenge. Most of the previously reported biomedical microswimmers possess either strong magnetic properties by using non-biocompatible nickel coating or good biocompatibility by using iron oxide particle-embedded hydrogel with weak magnetism, but not both.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2023
Bone defects are common in orthopaedics and there is an urgent need to explore effective bone repair materials with osteoinductive activity. Peptide self-assembled nanomaterials have a fibrous structure like that of the extracellular matrix and are ideal bionic scaffold materials. In this study, a short peptide WP9QY (W9) with strong osteoinductive effect was tagged to a self-assembled peptide RADA16 molecule through solid phase synthesis to design a RADA16-W9 peptide gel scaffold.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
Cell delivery using magnetic microswimmers is a promising tool for targeted therapy. However, it remains challenging to rapidly and uniformly manufacture cell-loaded microswimmers that can be assembled into cell-supporting structures at diseased sites. Here, rapid and uniform manufacturable 2D magnetic achiral microswimmers with pores were fabricated to deliver bone marrow mesenchymal stem cells (BMSCs) to regenerate articular-damaged cartilage.
View Article and Find Full Text PDFThe emergence and rapid spread of multidrug resistant (MDR) Gram-negative bacteria have posed a serious threat to global health and security. Because of the time-consuming, high cost and high risk of developing new antibiotics, a significant method is to use antibiotic adjuvants to revitalize the existing antibiotics. The purpose of the study is to research the traditional Chinese medicine baicalin with the function of inhibiting the efflux pump and EDTA whether their single or combination can increase the activity of colistin against colistin-resistant Salmonella in vitro and in vivo, and to explore its molecular mechanisms.
View Article and Find Full Text PDF