Publications by authors named "JunGoo Jee"

Macrophage colony-stimulating factor (M-CSF, also known as CSF1) in tumor tissues stimulates tumor growth and tumor-induced angiogenesis through an autocrine and paracrine action on CSF1 receptor (CSF1R). In the present study, novel bioisosteres of pexidartinib (1) were synthesized and evaluated their inhibitory activities against CSF1R kinase and tumor growth. Among newly synthesized bioisosteres, compound 3 showed the highest inhibition (95.

View Article and Find Full Text PDF

A multi-target small molecule modulator is advantageous for treating complicated diseases such as cancers. However, the strategy and application for discovering a multi-target modulator have been less reported. This study presents the dual inhibitors for kinase and carbonic anhydrase (CA) predicted by machine learning (ML) classifiers, and validated by biochemical and biophysical experiments.

View Article and Find Full Text PDF

Tyrosinase, a metalloenzyme containing a dicopper cofactor, plays a central role in synthesizing melanin from tyrosine. Many studies have aimed to identify small-molecule inhibitors of tyrosinase for pharmaceutical, cosmetic, and agricultural purposes. In this study, we report that hydroxamic acid is a potent metal-binding group for interacting with dicopper atoms, thereby inhibiting tyrosinase.

View Article and Find Full Text PDF

Biliverdin IXβ reductase B (BLVRB) has recently been proposed as a novel therapeutic target for thrombocytopenia through its reactive oxygen species (ROS)-associated mechanism. Thus, we aim at repurposing drugs as new inhibitors of BLVRB. Based on IC (<5 μM), we have identified 20 compounds out of 1496 compounds from the Food and Drug Administration (FDA)-approved library and have clearly mapped their binding sites to the active site.

View Article and Find Full Text PDF

Coppers play crucial roles in the maintenance homeostasis in living species. Approximately 20 enzyme families of eukaryotes and prokaryotes are known to utilize copper atoms for catalytic activities. However, small-molecule inhibitors directly targeting catalytic centers are rare, except for those that act against tyrosinase and dopamine-β-hydroxylase (DBH).

View Article and Find Full Text PDF

Two novel bioisosteres of cabozantinib, and , were designed and synthesized. The benzene ring in the center of the cabozantinib structure was replaced by trimethylpyridine () and pyridine (), respectively. Surprisingly, the two compounds showed extremely contrasting mesenchymal-epithelial transition factor (-Met) inhibitory activities at 1 μM concentration (4% inhibition of vs.

View Article and Find Full Text PDF

Sorafenib is recommended as the primary therapeutic drug for patients with hepatocellular carcinoma. To discover a new compound that avoids low response rates and toxic side effects that occur in sorafenib therapy, we designed and synthesized new hybrid compounds of sorafenib and 2,4,5-trimethylpyridin-3-ols. Compound was selected as the best of 24 hybrids that inhibit each of the four Raf kinases.

View Article and Find Full Text PDF

Background: Understanding structural interactions between the active drug and conjugated nanoparticles is critical for optimizing intracellular drug transport and for increasing nano drug efficacy. In this regard, analyzing the conformational deformation of conjugated drugs surrounding nanoparticles is essential to understand the corresponding nanodrug efficacy.

Purpose: The objective of this study is to present an optimal synthesis method for efficient drug delivery through a clear structural analysis of nanodrugs according to the type of conjugation.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive breast-cancer subtype associated with poor prognosis and high relapse rates. Monopolar spindle 1 kinase (MPS1) is an apical dual-specificity protein kinase that is over-expressed in TNBC. We herein report a highly selective MPS1 inhibitor based on a 7-pyrrolo[2,3-]pyrimidine-5-carbonitrile scaffold.

View Article and Find Full Text PDF

Gain- or loss-of-function mutations in Janus kinase 3 (JAK3) contribute to the pathogenesis of various haematopoietic malignancies and immune disorders, suggesting that aberrant JAK3 signalling is an attractive therapeutic target to treat these disorders. In this study, we performed structure-based computational database screening using the 3D structure of the JAK3 kinase domain and the National Cancer Institute diversity set and identified tubulosine as a novel JAK3 inhibitor. Tubulosine directly blocked the catalytic activity of JAK3 by selective interacting with the JAK3 kinase domain.

View Article and Find Full Text PDF

Inhibitors of the secretion of cancer exosomes, which promote cancer progression and metastasis, may not only accelerate exosome biology research but also offer therapeutic benefits for cancer patients. Here we identify sulfisoxazole (SFX) as an inhibitor of small extracellular vesicles (sEV) secretion from breast cancer cells through interference with endothelin receptor A (ETA). SFX, an FDA-approved oral antibiotic, showed significant anti-tumor and anti-metastatic effects in mouse models of breast cancer xenografts, the reduced expression of proteins involved in biogenesis and secretion of sEV, and triggered co-localization of multivesicular endosomes with lysosomes for degradation.

View Article and Find Full Text PDF

Background And Purpose: In this study, we examined the possibility that 4-hydroxynonenal (4-HNE) acting as a ligand for the HCA receptor (GPR109A) elicits both anti-inflammatory and cell death responses.

Experimental Approach: Agonistic activity of 4-HNE was determined by observing the inhibition of cAMP generation in CHO-K1-GPR109A-G cell line, using surface plasmon resonance (SPR) binding and competition binding assays with [ H]-niacin. 4-HNE-mediated signalling pathways and cellular responses were investigated in cells expressing GPR109A and those not expressing these receptors.

View Article and Find Full Text PDF

Heat shock protein 90 (Hsp90) is one of the most abundant cellular proteins and plays a substantial role in the folding of client proteins. The inhibition of Hsp90 has been regarded as an attractive therapeutic strategy for treating cancer because many oncogenic kinases are Hsp90 client proteins. In this study, we report new inhibitors that directly bind to N-terminal ATP-binding pocket of Hsp90.

View Article and Find Full Text PDF

The use of thrombolytic therapies is limited by an increased risk of systemic hemorrhage due to lysis of hemostatic clots. We sought to develop a plasmin-based thrombolytic nanocage that efficiently dissolves the clot without causing systemic fibrinolysis or disrupting hemostatic clots. Here, we generated a double chambered short-length ferritin (sFt) construct that has an N-terminal region fused to multivalent clot targeting peptides (CLT: CNAGESSKNC) and a C-terminal end fused to a microplasmin (μPn); CLT recognizes fibrin-fibronectin complexes in clots, μPn efficiently dissolves clots, and the assembly of double chambered sFt (CLT-sFt-μPn) into nanocage structure protects the activated-μPn from its circulating inhibitors.

View Article and Find Full Text PDF

Drug repositioning is the application of the existing drugs to new uses and has the potential to reduce the time and cost required for the typical drug discovery process. In this study, we repositioned thiopurine drugs used for the treatment of acute leukaemia as new tyrosinase inhibitors. Tyrosinase catalyses two successive oxidations in melanin biosynthesis: the conversions of tyrosine to dihydroxyphenylalanine (DOPA) and DOPA to dopaquinone.

View Article and Find Full Text PDF

Interaction between angiogenin and the p53 TAD2 domain in cancer cells can inhibit the function of the p53 tumor suppressor and promote cell survival. Based on a model structure using NMR and mutational analysis, positively charged RRR and KRSIK motifs of human angiogenin were identified as p53-binding sites that could interact with negatively charged D48/E51 and E56 residues of the p53 TAD2 domain, respectively. These results suggest that RRR and KRSIK motifs of human angiogenin might play a critical role in the regulation of p53-mediated apoptosis and angiogenesis in cancer cells.

View Article and Find Full Text PDF

The development of new anticoagulants is an important goal for the improvement of thrombosis treatment. Recent studies have suggested the importance of thrombin inhibitors in the modulation of thromboembolic disorders. The aim of this study was to discover a new small-molecule thrombin inhibitor.

View Article and Find Full Text PDF

The periplasmic domain of OmpA from Acinetobacter baumannii (AbOmpA-PD) binds to diaminopimelate and anchors the outer membrane to the peptidoglycan layer in the cell wall. Although the crystal structure of AbOmpA-PD with its ligands has been reported, the mechanism of ligand-mediated folding of AbOmpA remains elusive. Here, we report that in vitro refolded apo-AbOmpA-PD in the absence of ligand exists as a mixture of two partially folded forms in solution: mostly unfolded (apo-state I) and hololike (apo-state II) states.

View Article and Find Full Text PDF

Ferritin cage nanoparticles are promising platforms for targeted delivery of imaging and therapeutic agents because their cage structure can accommodate small molecules and their surfaces can be decorated with multiple functionalities. However, selective targeting is still a challenge for translating ferritin-based nanomedicines into the clinic, especially for heterogeneous diseases such as cancer. Targeting peptides can be genetically fused onto the surface of a ferritin cage, forming peptide bunches on nanocages (PBNCs) that offer synergistic increases in binding avidity.

View Article and Find Full Text PDF

In this study, we report new classes of potent tyrosinase inhibitors identified by enhanced structure-based virtual screening prediction; the enzyme and melanin content assays were also confirmed. Tyrosinase, a type-3 copper protein, participates in two distinct reactions, hydroxylation of tyrosine to DOPA and conversion of DOPA to dopaquinone, in melanin biosynthesis. Although numerous inhibitors of this reaction have been reported, there is a lag in the discovery of the new functional moieties.

View Article and Find Full Text PDF

Tyrosinase catalyzes two distinct sequential reactions in melanin biosynthesis: The hydroxylation of tyrosine to dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to dopaquinone. Developing functional modulators of tyrosinase is important for therapeutic and cosmetic purposes. Given the abundance of thiourea moiety in known tyrosinase inhibitors, we studied other thiourea-containing drugs as potential tyrosinase inhibitors.

View Article and Find Full Text PDF

The tight complexes FKBP12 forms with immunosuppressive drugs, such as FK506 and rapamycin, are frequently used as models for developing approaches to structure-based drug design. Although the interfaces between FKBP12 and these ligands are well-defined structurally and are almost identical in the X-ray crystallographic structures of various complexes, our nuclear magnetic resonance studies have revealed the existence of substantial large-amplitude motions in the FKBP12-ligand interfaces that depend on the nature of the ligand. We have monitored these motions by measuring the rates of Tyr and Phe aromatic ring flips, and hydroxyl proton exchange for residues clustered within the FKBP12-ligand interface.

View Article and Find Full Text PDF

Tyrosinase catalyzes two distinct sequential reactions in melanin biosynthesis: the hydroxylation of tyrosine to DOPA followed by the oxidation of DOPA to dopaquinone. The central roles of melanin in living species have motivated researchers to maintain constant efforts to discover new agents that modulate tyrosinase activity. In this study, we report on the inhibition of tyrosinase by ethionamide and its analogues.

View Article and Find Full Text PDF

Plumbagin is a secondary metabolite that was first identified in the Plumbago genus of plants. It is a naphthoquinone compound with anti-atherosclerosis, anticancer, anti-inflammatory, antimicrobial, contraceptive, cardiotonic, immunosuppressive, and neuroprotective activities. However, the mechanisms of plumbagin's activities are largely unknown.

View Article and Find Full Text PDF

Background: The bark of Machilus thunbergii (Lauraceae) has been used as a folk medicine to treat abdominal pain and distension, and leg edema in Korea. Machilin A (MA), a lignan isolated from Machilus thunbergii, exhibits several biological activities including anti-oxidant and stimulatory effects on cell differentiation and proliferation.

Purpose: Potential drug-interactions with MA via inhibition of cytochrome P450 (CYP) activity in human liver microsomes (HLMs), have not been investigated.

View Article and Find Full Text PDF