ACS Appl Mater Interfaces
March 2012
Cu(2)ZnSnSe(4) (CZTSe) nanoparticles with diameters of 200-300 nm were synthesized by one-step solvothermal method without surfactants or templates. The structure, composition and morphology of CZTSe nanoparticles were characterized by XRD, XPS, Raman spectrum, EDS, FESEM and TEM. The results indicated that the nanoparticles were single phase and nearly stoichiometric composition.
View Article and Find Full Text PDFOne-dimensional semiconductor nanostructures grown directly onto transparent conducting oxide substrates with a high internal surface area are most desirable for high-efficiency dye-sensitized solar cells (DSSCs). Herein, we present a multicycle hydrothermal synthesis process to produce vertically aligned, single crystal rutile TiO(2) nanowires with different lengths between 1 and 8 μm for application as the working electrode in DSSCs. Optimum performance was obtained with a TiO(2) nanowire length of 2.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2011
One-dimensional semiconductor architectures are receiving attention in preparing photovoltaic solar cells because of its superior charge transport as well as excellent light-harvesting efficiency. In this study, vertically aligned single-crystalline TiO(2) nanorods array was grown directly on transparent conductive glass (FTO), and then CuInS(2) nanocrystals were deposited on nanorods array by spin coating method to form TiO(2)/CuInS(2) heterostructure films. The resulting nanostructure assembly and composition was confirmed by field-emission scanning electron microscope (FESEM) , transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction(XRD).
View Article and Find Full Text PDF