Publications by authors named "Jun-jie Zhu"

Measuring the localized transient heat generation is critical for developing applications of nanomaterials in areas of photothermal therapy (PTT), drug delivery, optomechanics and biological processes engineering. However, accurate thermometry with high spatiotemporal resolution is still a challenge. Here we develop a thermosensitive polymer-capped gold nanorod (AuNRs@pNIPAAm), which has temperature-dependent local surface plasmon resonance spectra due to the submolecular conformational change of pNIPAAm molecules.

View Article and Find Full Text PDF

Ready access to comprehensive influent information can help water reclamation plant (WRP) operators implement better real-time process controls, provide operational reliability and reduce energy consumption. The five-day biochemical oxygen demand (BOD), a critical parameter for WRP process control, is expensive and difficult to measure using hard-sensors. An alternative approach based on a soft-sensor methodology shows promise, but can be problematic when used to predict high BOD values.

View Article and Find Full Text PDF

Aeration accounts for a large fraction of energy consumption at conventional water reclamation plants (WRPs). Older plants were designed when control techniques were relatively primitive and energy consumption was less of a concern. As a result, although process operations at older WRPs can satisfy effluent permit requirements, they can operate with excess aeration.

View Article and Find Full Text PDF

A precisely controlled drug release is a great challenge in exploring methodologies of drug administration and fighting drug resistance for successful cancer chemotherapy. Herein, we developed a dual-mode nanocarrier to specifically deliver doxorubicin (Dox) and precisely control the drug release in target tumor cells. This hierarchical nanocarrier consisted of a gold nanorod as the heating core, biodegradable mesoporous silica as the storage chamber, and graphene quantum dot (GQD) as a drug carrier.

View Article and Find Full Text PDF

Correction for 'Visible-light-enhanced power generation in microbial fuel cells coupling with 3D nitrogen-doped graphene' by Dan Guo et al., Chem. Commun.

View Article and Find Full Text PDF

Fluorescence imaging with tumor-specific fluorescent probe has emerged as a tool to aid surgeons in the identification and removal of tumor tissue. We report here a new lysosome-targeting fluorescent probe (NBOH) with BODIPY fluorephore to distinguish tumor tissue out of normal tissue based on different pH environment. The probe exhibited remarkable pH-dependent fluorescence behavior in a wide pH range from 3.

View Article and Find Full Text PDF

Plasmonic Au-Pd nanostructures have drawn significant attention for use in heterogeneous catalysis. In this study, palladium nanodendrite-tipped gold nanorods (PdND-T-AuNRs) were subjected to a facile fabrication under mild reaction conditions. The palladium amounts on the two tips were tunable.

View Article and Find Full Text PDF

A new visible-light-assisted microbial fuel cell composed of a three-dimensional nitrogen-doped graphene self-standing sponge anode and a photoresponsive cathode has been developed for achieving multiple energy conversion and a higher power output.

View Article and Find Full Text PDF

Halide perovskite materials have emerged as a new class of revolutionary photovoltaic and optoelectronic nanomaterials. However, the study on electrochemiluminescence (ECL) from halide perovskite nanomaterials is still in its infancy due to their instability, sensitivity, and difficulties in purification and film formation. Here, we propose a scraping coating method for the fabrication of high-quality halide perovskite quantum dot (QD) film on electrode, which shows dense and uniform packing with minimum grain size.

View Article and Find Full Text PDF

Nanocarrier surface chemistry plays a vital role in mediating cell internalization and enhancing delivery efficiency during in vivo chemotherapy. Inspired by the ability of proteins to alter their conformation to mediate functions, a pH-/thermal-/glutathione-responsive polymer zipper consisting of cell-penetrating poly(disulfide)s and thermosensitive polymers bearing guanidinium/phosphate (Gu /pY ) motifs to spatiotemporally tune the surface composition of nanocarriers for precise tumor targeting and efficient drug delivery is developed. Surface engineering allows the nanocarriers to remain undetected during blood circulation and favors passive accumulation at tumor sites, where the acidic microenvironment and photothermal heating break the pY /Gu binding and rupture the zipper, thereby exposing the penetrating shell and causing enhanced cellular uptake via counterion-/thiol-/receptor-mediated endocytosis.

View Article and Find Full Text PDF

Coating individual bacterial cells with conjugated polymers to endow them with more functionalities is highly desirable. Here, we developed an in situ polymerization method to coat polypyrrole on the surface of individual Shewanella oneidensis MR-1, Escherichia coli, Ochrobacterium anthropic or Streptococcus thermophilus. All of these as-coated cells from different bacterial species displayed enhanced conductivities without affecting viability, suggesting the generality of our coating method.

View Article and Find Full Text PDF

A noble-metal-free electrocatalyst is fabricated via in situ formation of nanocomposite of nitrogen-doped graphene quantum dots (NGQDs) and Ni S nanosheets on the Ni foam (Ni S -NGQDs/NF). The resultant Ni S -NGQDs/NF can serve as an active, binder-free, and self-supported catalytic electrode for direct water splitting, which delivers a current density of 10 mA cm at an overpotential of 216 mV for oxygen evolution reaction and 218 mV for hydrogen evolution reaction in alkaline media. This bifunctional electrocatalyst enables the construction of an alkali electrolyzer with a low cell voltage of 1.

View Article and Find Full Text PDF

A novel luminescence 'Turn-On' nanoplatform for the sensitive sensing of Ag was fabricated based on luminescence resonance energy transfer technique between sodium citrate functionalized upconversion nanoparticles (Cit-UCNPs, energy donor) and graphene quantum dots (GQDs, energy acceptor). Amino-labeled single-stranded DNA (NH-ssDNA) containing a number of cytosine (C) was conjugated on the surface of the Cit-UCNPs to capture Ag ions. Due to the π-π stacking interaction between NH-ssDNA and GQDs, the upconversion luminescence can be quenched.

View Article and Find Full Text PDF

DNAzymes have enjoyed success as metal ion sensors outside cells. Their susceptibility to metal-dependent cleavage during delivery into cells has limited their intracellular applications. To overcome this limitation, a near-infrared (NIR) photothermal activation method is presented for controlling DNAzyme activity in living cells.

View Article and Find Full Text PDF

Telomerase plays a vital role in cancer and aging, and telomerase activity detection has drawn great attention recently. However, a feasible imaging system for intracellular telomerase is still a challenge. Here, we develop a novel approach to image intracellular telomerase activity using DNA-based computation.

View Article and Find Full Text PDF

In the present work, electrogenerated chemiluminescence (ECL) of luminol was investigated in neutral condition at a gold electrode in the presence of silicon quantum dots (SiQDs). The results revealed that SiQDs can not only greatly enhance luminol ECL, but also act as energy acceptor to construct a novel ECL resonance energy transfer (ECL-RET) system with luminol. As a result, strong anodic ECL signal was obtained in neutral condition at the bare gold electrode, which is suitable for biosensing application.

View Article and Find Full Text PDF

Tin (Sn) is known to be a good catalyst for electrochemical reduction of CO to formate in 0.5 M KHCO. But when a thin layer of SnO is coated over Cu nanoparticles, the reduction becomes Sn-thickness dependent: the thicker (1.

View Article and Find Full Text PDF

An ultrasensitive electrochemiluminescence (ECL) biosensor for the detection of microRNA was developed based on nicking enzymes Nb.BbvCI mediated signal amplification (NESA). First, the hairpin probe1-N-CQDs with assistant probe and microRNA (miRNA) formed Y junction structure which was cleaved with the addition of nicking enzymes Nb.

View Article and Find Full Text PDF

During the past decade, biofuel cells (BFCs) have emerged as an emerging technology on account of their ability to directly generate electricity from biologically renewable catalysts and fuels. Due to the boost in nanotechnology, significant advances have been accomplished in BFCs. Although it is still challenging to promote the performance of BFCs, adopting nanostructured materials for BFC construction has been extensively proposed as an effective and promising strategy to achieve high energy production.

View Article and Find Full Text PDF

In this work, a self-electrochemiluminous graphene oxide-capped Au@L012 nanocomposite was prepared as the label at carcinoembryonic (CEA) antibody to detect attomole CEA antigen. To maximize the luminescence intensity, L012 molecules (luminol analogue) were linked with poly(diallyldimethylammonium chloride) (PDDA) to form positive charged PDDA&L012 pairs, which were modified on negative charged Au@nafion nanoparticles to construct a Au@nafion@PDDA&L012 (Au@L012) complex. Graphene oxide with carboxyl groups was capped at Au@L012 complex through electrostatic interaction to serve as an effective matrix for the covalent attachment of CEA antibody.

View Article and Find Full Text PDF

An activatable silver nanoclusters beacon (ASNCB) was synthesized through a facile one-pot approach and applied for multiplex DNAs, small molecule, and protein sensing. Multifunctional single-stranded DNA sequences are rationally designed and used for ASNCB in situ synthesis. Via target-responsive structure transformation of ASNCB, target recognition induced ASNCB conformational transition and lit up the fluorescent signal of silver nanoclusters.

View Article and Find Full Text PDF

A water reclamation plant (WRP) needs to be resilient to successfully operate through different kinds of perturbations. Perturbations such as storm events, especially long-term successive storm flows, can adversely affect operations. A better understanding of these effects can provide benefits for plant operation, in terms of effluent quality and energy efficiency.

View Article and Find Full Text PDF

Sensitive and accurate analysis of DNA is crucial to better understanding of DNA functions and early diagnosis of fatal disease. Herein, an enhanced photoelectrochemical (PEC) DNA biosensor was proposed based on dual-signal amplification via coupling inorganic-organic nanocomposites sensitization with λ-exonuclease (λ-Exo)-assisted target recycling. The short DNA sequence about chronic myelogenous leukemia (CML, type b3a2) was selected as target DNA (tDNA).

View Article and Find Full Text PDF

The enhancement of microbial activity and electrocatalysis through the design of new anode materials is essential to develop microbial fuel cells (MFCs) with longer lifetimes and higher output. In this research, a novel anode material, graphene/Fe O (G/Fe O ) composite, has been designed for Shewanella-inoculated MFCs. Because the Shewanella species could bind to Fe O with high affinity and their growth could be supported by Fe O , the bacterial cells attached quickly onto the anode surface and their long-term activity improved.

View Article and Find Full Text PDF