Publications by authors named "Jun-jie Yin"

Epithelioid hemangioendothelioma is a low-grade malignant tumor of vascular origin. The rarity of hepatic epithelioid hemangioendothelioma (HEHE) makes the diagnosis and treatment of this entity challenging. We report a case of a 69-year-old female patient who suffered from HEHE and complained of abdominal distension pain with dizziness and appetite loss for more than half a month.

View Article and Find Full Text PDF

Objective: To investigate the effect of expression regulated by miR-21 on proliferation and apoptosis of acute myeloid leukemia cells.

Methods: Seventy patients with AML admitted to our hospital from January 2019 to July 2022 were selected, while 30 patients with iron deficiency anemia were selected as the control group. Bone marrow mononuclear cells (BMMNCs) of the patients were obtained using Ficoll density gradient centrifugation.

View Article and Find Full Text PDF

The first total syntheses of polycyclic diterpenes phomopsene (), methyl phomopsenonate (), and -phomopsene () have been accomplished through the unusual cascade reorganization of C-C single bonds. This approach features: (i) a synergistic Nazarov cyclization/double ring expansions in one-step, developed by authors, to rapid and stereospecific construction of the 5/5/5/5 tetraquinane scaffold bearing contiguous quaternary centers and (ii) a one-pot strategic ring expansion through Beckmann fragmentation/recombination to efficiently assemble the requisite 5/5/6/5 tetracyclic skeleton of the target molecules -. This work enables us to determine that the correct structure of -phomopsene is, in fact, the C7 epimer of the originally assigned structure.

View Article and Find Full Text PDF

A modular and efficient method for constructing angular tri-carbocyclic architectures containing quaternary carbon center(s) from 1,3-dicycloalkylidenyl ketones is established, which involves an unconventional synergistic cascade of a Nazarov cyclization and two ring expansions. It features high selectivity, mild conditions and convenient operation, wide scope and easy availability of substrate. Substitution with R and R at the 4πe-system with electron-donating group favors this reaction, while that with electron-withdrawing group or proton disfavors.

View Article and Find Full Text PDF

Nano-metals, nano-metal oxides, and carbon-based nanomaterials exhibit superior solar-to-chemical/photo-electron transfer properties and are potential candidates for environmental remediations and energy transfer. Recent research effort focuses on enhancing the efficiency of photoinduced electron-hole separation to improve energy transfer in catalytic reactions. Electron spin resonance (ESR) spectroscopy has been used to monitor the generation of electron/hole and reactive oxygen species (ROS) during nanomaterial-mediated photocatalysis.

View Article and Find Full Text PDF

Effective alcohol detection represents a substantial concern not only in the context of personal and automobile safety but also in clinical settings as alcohol is a contributing factor in a wide range of health complications including various types of liver cirrhoses, strokes, and cardiovascular diseases. Recently, many kinds of nanomaterials with enzyme-like properties have been widely used as biosensors. Herein, we have developed a convenient detection method that combines Au@PtRu nanozymes and alcohol oxidase (AOx).

View Article and Find Full Text PDF

Manganese oxide nanoparticles (MnO NPs) have been suggested to possess several enzyme-like activities. However, studies often used either color change or fluorescence to determine the catalytic activity. Despite the simplicity and sensitivity of these probes, these methods may give distracting artifacts or not reflect the catalytic activities in biological systems.

View Article and Find Full Text PDF

Noble-metal-based nanomaterials made of less toxic metals have been utilized as potential antibacterial agents due to their distinctive oxidase-like activity. In this study, we fabricated core-shell structured Pd@Ir bimetallic nanomaterials with an ultrathin shell. Pd@Ir nanostructures show morphology-dependent bactericidal activity, in which Pd@Ir octahedra possessing higher oxidase-like activity exert bactericidal activity stronger than that of Pd@Ir cubes.

View Article and Find Full Text PDF

Gold nanoparticles (Au NPs) hold great promise in food, industrial and biomedical applications due to their unique physicochemical properties. However, influences of the gastrointestinal tract (GIT), a likely route for Au NPs administration, on the physicochemical properties of Au NPs has been rarely evaluated. Here, we investigated the influence of GIT fluids on the physicochemical properties of Au NPs (5, 50, and 100 nm) and their implications on intestinal epithelial permeability .

View Article and Find Full Text PDF

Many metal nanoparticles are reported to have intrinsic enzyme-like activities and offer great potential in chemical and biomedical applications. In this study, PtCu alloy nanoparticles (NPs), synthesized through hydrothermal treatment of Cu and Pt in an aqueous solution, were evaluated for ferroxidase-like and antibacterial activity. Electron spin resonance (ESR) spectroscopy and colorimetric methods were used to demonstrate that PtCu NPs exhibited strong ferroxidase-like activity in a weakly acidic environment and that this activity was not affected by the presence of most other ions, except silver.

View Article and Find Full Text PDF

Background: Nanomaterials that exhibit intrinsic enzyme-like characteristics have shown great promise as potential antibacterial agents. However, many of them exhibit inefficient antibacterial activity and biosafety problems that limit their usefulness. The development of new nanomaterials with good biocompatibility and rapid bactericidal effects is therefore highly desirable.

View Article and Find Full Text PDF

The oriented attachment of small nanoparticles (NPs) is recognized as an important mechanism involved in the growth of inorganic nanocrystals. However, non-oriented attachment of dissimilar NPs has been rarely observed in dispersion. This communication reports a welding phenomenon occurred directly between as-synthesized dispersions of single-component Au and chalcogenide NPs, which leads to the formation of asymmetric Au-chalcogenide hybrid NPs (HNPs).

View Article and Find Full Text PDF

Molybdenum disulfide (MoS) nanosheets have received considerable interest due to their superior physicochemical performances to graphene nanosheets. As the lateral size and layer thickness decrease, the formed MoS quantum dots (QDs) show more promise as photocatalysts, endowing them with potential antimicrobial properties under environmental conditions. However, studies on the antibacterial photodynamic therapy of MoS QDs have rarely been reported.

View Article and Find Full Text PDF

Background: Gold nanoparticles (AuNPs) are attracting interest as potential therapeutic agents to treat inflammatory diseases, but their anti-inflammatory mechanism of action is not clear yet. In addition, the effect of orally administered AuNPs on gut microbiota has been overlooked so far. Here, we evaluated the therapeutic and gut microbiota-modulating effects, as well as the anti-inflammatory paradigm, of AuNPs with three different coatings and five difference sizes in experimental mouse colitis and RAW264.

View Article and Find Full Text PDF

Recent studies showed that melanin-mimetic catechol-chitosan films are redox-active and their ability to exchange electrons confers pro-oxidant activities for the sustained, in situ generation of reactive oxygen species for antimicrobial bandages. Here we electrofabricated catechol-chitosan films, demonstrate these films are redox-active, and show their ability to exchange electrons confers sustained radical scavenging activities that could be useful for protective coatings. Electrofabrication was performed in two steps: cathodic electrodeposition of a chitosan film followed by anodic grafting of catechol to chitosan.

View Article and Find Full Text PDF

Nitric oxide (NO) is an endogenous bioregulator with established roles in diverse fields. The difficulty in the modulation of NO release is still a significant obstacle to achieving successful clinical applications. We report herein our initial work using electron spin resonance (ESR) spectroscopy to detect NO generated from S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) donors catalyzed by platinum nanoparticles (Pt NPs, 3 nm) under physiological conditions.

View Article and Find Full Text PDF

The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g.

View Article and Find Full Text PDF

Noble metal nanoparticles (NPs) have been widely used in many consumer products. Their effects on the antioxidant activity of commercial dietary supplements have not been well evaluated. In this study, we examined the effects of gold (Au NPs), silver (Ag NPs), platinum (Pt NPs), and palladium (Pd NPs) on the hydroxyl radical (·OH) scavenging ability of three dietary supplements vitamin C (L-ascorbic acid, AA), (-)-epigallocatechin gallate (EGCG), and gallic acid (GA).

View Article and Find Full Text PDF

Aim: To develop the potential application of carbon nanomaterials as antioxidants calls for better understanding of how the specific structure affects their antioxidant activity.

Materials & Methods: Several typical carbon nanomaterials, including graphene quantum dots and fullerene derivatives were characterized and their radical scavenging activities were evaluated; in addition, the in vitro and in vivo radioprotection experiments were performed.

Results: These carbon nanomaterials can efficiently scavenge free radicals in a structure-dependent manner.

View Article and Find Full Text PDF

While the antibacterial properties of silver nanoparticles (AgNPs) have been demonstrated across a spectrum of bacterial pathogens, the effects of AgNPs on the beneficial bacteria are less clear. To address this issue, we compared the antibacterial activity of AgNPs against two beneficial lactobacilli ( Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei) and two common opportunistic pathogens ( Escherichia coli and Staphylococcus aureus).

View Article and Find Full Text PDF

Herein we reported Prussian blue nanoparticles (PBNPs) possess ascorbic acid oxidase (AAO)- and ascorbic acid peroxidase (APOD)-like activities, which suppressed the formation of harmful HO and finally inhibited the anti-cancer efficiency of ascorbic acid (AA). This newly revealed correlation between iron and AA could provide new insight for the studies of nanozymes and free radical biology.

View Article and Find Full Text PDF

Research on noble metal nanoparticles (NPs) able to scavenge reactive oxygen species (ROS) has undergone a tremendous growth recently. However, the interactions between ruthenium nanoparticles (Ru NPs) and ROS have never been systematically explored thus far. This research focused on the decomposition of hydrogen peroxide (HO), scavenging of hydroxyl radicals (OH), superoxide radical (O), singlet oxygen (O), 2,2'-azino-bis(3-ethylbenzenothiazoline- 6-sulfonic acid ion (ABTS), and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) in the presence of commercial Ru NPs using the electron spin resonance technique.

View Article and Find Full Text PDF

Although nanosized ingredients, including TiO nanoparticles (NPs), can be found in a wide range of consumer products, little is known about the effects these particles have on other active compounds in product matrices. These NPs can interact with reactive oxygen species (ROS), potentially disrupting or canceling the benefits expected from antioxidants. We used electron spin resonance spectrometry to assess changes in the antioxidant capacities of six dietary antioxidants (ascorbic acid, α-tocopherol, glutathione, cysteine, epicatechin, and epicatechin gallate) during exposure to P25 TiO and/or simulated sunlight.

View Article and Find Full Text PDF

Melanins are ubiquitous in nature but their biological activities and functions have been difficult to discern. Conventional approaches to determine material function start by resolving structure and then characterize relevant properties. These approaches have been less successful for melanins because of their complex structure and insolubility, and because their relevant properties are not readily characterized by conventional methods.

View Article and Find Full Text PDF