Publications by authors named "Jun-jie Yan"

Article Synopsis
  • - Two new types of compounds, neolignan glycosides and iridoid glycosides, were discovered in the leaves of a specific plant, along with nine flavonoid glycosides, using advanced analysis techniques like NMR and ESIMS.
  • - The unique structure of one of the neolignan glycosides was verified through chemical breakdown and ECD calculations, confirming its absolute stereochemistry.
  • - Some of these isolated compounds displayed antiradical activity and were found to reduce reactive oxygen species (ROS) levels in certain cells, showing potential neuroprotective effects.
View Article and Find Full Text PDF

The widespread use of therapeutic glucocorticoids has increased the incidences of glucocorticoid-induced osteoporosis (GIOP). Oxidative stress and mitochondrial dysfunction are major causes of GIOP; therefore, alleviation of excess oxidative stress in osteoblasts is a potential therapeutic strategy for osteoporosis. Exosomes derived from ADSCs (ADSCs-Exos), as novel cell-free therapeutics, can modulate various biological processes, such as immunomodulation, reduce oxidative damage, and promote tissue repair as well as regeneration.

View Article and Find Full Text PDF

The potato tuber moth, Phthorimaea operculella, is the most damaging potato pest in the world and is difficult to control as the larvae are internal feeders in the foliage and tubers. Entomopathogenic fungi that colonize plants as endophytes have lethal and sublethal pathological effects on insect pests. We show that Beauveria bassiana colonizes the aerial parts of potato plants endophytically after inoculation through soil drenching.

View Article and Find Full Text PDF

In desert habitats, sand burial is an important factor affecting germination of plant seeds and seedling growth. Xanthium spinosum has strong adaptability in arid desert areas, and is a common malignant invasive plant in Xinjiang, China. The effects of different sand burial depths on seed germination, seedling emergence, growth and biomass allocation were studied to provide a scientific basis for further control of X.

View Article and Find Full Text PDF

Mushroom-forming fungi are complex multicellular organisms that form the basis of a large industry, yet, our understanding of the mechanisms of mushroom development and its responses to various stresses remains limited. The winter mushroom (Flammulina filiformis) is cultivated at a large commercial scale in East Asia and is a species with a preference for low temperatures. This study investigated fruiting body development in F.

View Article and Find Full Text PDF

Clinical tracking of chimeric antigen receptor (CAR) T cells in vivo by positron emission tomography (PET) imaging is an area of intense interest. But the long-lived positron emitter-labeled CAR T cells stay in the liver and spleen for days or even weeks. Thus, the excessive absorbed effective dose becomes a major biosafety issue leading it difficult for clinical translation.

View Article and Find Full Text PDF

Carbon dioxide is commonly used as one of the significant environmental factors to control pileus expansion during mushroom cultivation. However, the pileus expansion mechanism related to CO is still unknown. In this study, the young fruiting bodies of a popular commercial mushroom were cultivated under different CO concentrations.

View Article and Find Full Text PDF

NADPH oxidases are enzymes that have been reported to generate reactive oxygen species (ROS) in animals, plants and many multicellular fungi in response to environmental stresses. Six genes of the NADPH oxidase complex components, including vvnoxa, vvnoxb, vvnoxr, vvbema, vvrac1 and vvcdc24, were identified based on the complete genomic sequence of the edible fungus Volvariella volvacea. The number of vvnoxa, vvrac1, vvbema and vvcdc24 transcripts fluctuated with ageing, and the gene expression patterns of vvnoxa, vvrac1 and vvbema were significantly positively correlated.

View Article and Find Full Text PDF

Bioreducible polycations, which possess disulfide linkages in the backbone, have emerged as promising nucleic acid delivery carriers due to their high stability in extracellular physiological condition and bioreduction-triggered release of the genetic material. Further benefits of bioreducible polycations include decreased cytotoxicity due to intracellular reducing environment in the cytoplasm that contains high levels of reducing molecules such as glutathione. Here, we describe the synthesis of bioreducible polycations with emphasis on methods to control their topology.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is one of the most severe cardiovascular diseases in humans, often resulting in unexpected death. Early detection is critical for patient survival. Sandwich ELISA is a common method for the detection of AMI.

View Article and Find Full Text PDF

Nonconjugated red fluorescent polymers have been increasingly studied to improve the biocompatibility and penetration depth over conventional fluorescent materials. However, the accessibility of such polymers remains challenging due to the scarcity of nonconjugated fluorophores and lacking relevant mechanism of red-shifted fluorescence. Herein, we discovered that the combination of hydrogen bonding and π-π stacking interactions provides nonconjugated poly(amide-imide) with a large bathochromic shift (>100 nm) from blue-green fluorescence to red emission.

View Article and Find Full Text PDF

Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V.

View Article and Find Full Text PDF

As the first defence for cells to counteract the toxicity of active oxygen, superoxide dismutase (SOD) plays an important role in the response of living organisms to stress and cell differentiation. One extracellular Cu-ZnSOD (ecCu-ZnSOD), and two MnSODs, were identified based on the Volvariella volvacea genome sequence. All three genes have complicated alternative splicing modes during transcription; only when the fourth intron is retained can the Vv_Cu-Znsod1 gene be translated into a protein sequence with SOD functional domains.

View Article and Find Full Text PDF

Purpose: To apply research-based learning in education of bachelor intern students of stomatology and evaluate its role in promoting the comprehensive quality of the students.

Methods: Sixty students from grade 2007 and 2008 in school of stomatology, Wenzhou Medical University were enrolled in this study. Thirty of them were randomly selected into a group for research-based learning, while the others were taught with traditional teaching mode.

View Article and Find Full Text PDF

Encapsulation of negatively charged plasmid DNA into a small-sized nanocapsule without using any condensing agent is very challenging up to now. Here we report a versatile method for encapsulating large-sized plasmid DNAs into small-sized bioreducible nanocapsules in which shearing force and surfactant can fold large-sized plasmid DNAs into small-sized emulsion droplets containing bioreducible branched polymers. Subsequently, temperature triggers the bioreducible branched polymers to aggregate and cross-link at the water/oil interface of the emulsion nanodroplet, forming a bioreducible shell around the nanodroplet.

View Article and Find Full Text PDF

Disulfide-exchange was found to cross-link the polyplex of disulfide-containing poly(amido amine) and pDNA with heating of the polyplex solution over a short time. The cross-linked polyplexes based on disulfide-containing poly(amido amine) have excellent stability under physiological salt conditions, and have significantly enhanced transfection activity in the serum media compared to non-cross-linked polyplexes. In vivo, ICR mice were injected with the polyplex through the tail vein, the results show that the transfection efficiency of the cross-linked polyplex is higher than that of the non-cross-linked variety.

View Article and Find Full Text PDF

A new and easy method of stimuli-triggered growth and removal of a bioreducible nanoshell on nanoparticles is reported. The results show that pH or temperature could induce the aggregation of disulfide-contained branched polymers at the surface of nanoparticles; subsequently, the aggregated polymers could undergo intermolecular disulfide exchange to cross-link the aggregated polymers, forming a bioreducible polymer shell around nanoparticles. When these nanoparticles with a polymer shell are treated with glutathione (GSH) or d,l-dithiothreitol (DTT), the polymer shell could be easily removed from the nanoparticles.

View Article and Find Full Text PDF

Though great attention has been paid in constructing well-defined nano-structures via the self-assembly of amphiphilic macromolecules, the self-assembly of non-amphiphilic macromolecules in nanodroplet has drawn less attention up to now. Recently, we prepared a temperature-responsive PEG-based branched polymer with disulfide bonds in its backbone via reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(2-methoxyethoxy) ethyl methacrylate, oligo(ethylene glycol) methacrylate, and N,N'-cystamine bisacrylamide. Subsequently, we loaded the branched polymer into nanodroplets, and have found that the self-assembly behaviors of this branched poly-mer in the nanodroplet are different from those in common solution.

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width.

View Article and Find Full Text PDF

In nature, a sapling can grow into a big tree under irradiation of sunlight. In chemistry, a similar concept that a small molecule only exposing to sunlight grows into a hyperbranched macromolecule has not been realized by now. The achievement of the concept will be fascinating and valuable for polymer synthesis wherein sunlight is inexpensive, abundant, renewable, and nonpolluting.

View Article and Find Full Text PDF

Sequence-ordered polymers can be simply prepared in one pot via sequential monomer addition.

View Article and Find Full Text PDF

Intracellular processes, including endosomal escape and intracellular release, are efficiency-determining steps in achieving successful gene delivery. It has been found that the presence of acid-labile units in polymers can facilitate endosomal escape and that the presence of reducible units in polymers can lead to intracellular release. In this study, poly(amido amine)s with both bioreducible and acid-labile properties were synthesized to improve gene delivery compared with single-responsive carriers.

View Article and Find Full Text PDF

Bioreducible polycations, which possess disulfide linkages in the backbone, have appeared as promising gene delivery carriers due to their high stability in extracellular physiological condition and bioreduction-triggered release of genetic materials, as well as reduced cytotoxicity because intracellular cytosol is a reducing environment containing high level of reducing molecules such as glutathione. Here, we describe the syntheses of bioreducible polycations, and the methods for control over their topology are also presented.

View Article and Find Full Text PDF

The Hsp90 (for heat shock protein90) and the Sgt1 (for suppressor of the G2 allele of skp1) are widely distributed in animals, yeast, and plants. The former functions as molecular chaperon activating a series of client proteins, the latter functions as an adaptor protein participating in multiple biological processes such as immunity response through interactions with different protein complexes. In the present study, we have constructed a homology model of Hsp90-Sgt1 complex in rice based on a recently resolved structure from barley and Arabidopsis to explore its binding mechanisms and to understand the detailed interaction profile.

View Article and Find Full Text PDF