Facilitates chromatin transcription (FACT) is a histone chaperone that functions as a nucleosome remodeler and a chaperone. The two subunits of FACT, Spt16 and SSRP1, mediate multiple interactions between the subunits and components of the nucleosome. Among the interactions, the role of the DNA-binding domain in SSRP1 has not been characterized.
View Article and Find Full Text PDFAllosteric communication among domains in modular proteins consisting of flexibly linked domains with complimentary roles remains poorly understood. To understand how complementary domains communicate, we have studied human Pin1, a representative modular protein with two domains mutually tethered by a flexible linker: a WW domain for substrate recognition and a peptidyl-prolyl isomerase (PPIase) domain. Previous studies of Pin1 showed that physical contact between the domains causes dynamic allostery by reducing conformation dynamics in the catalytic domain, which compensates for the entropy costs of substrate binding to the catalytic site and thus increases catalytic activity.
View Article and Find Full Text PDFIntimate cooperativity among active site residues in enzymes is a key factor for regulating elaborate reactions that would otherwise not occur readily. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is the phosphorylation-dependent cis-trans peptidyl-prolyl isomerase (PPIase) that specifically targets phosphorylated Ser/Thr-Pro motifs. Residues C113, H59, H157, and T152 form a hydrogen bond network in the active site, as in the noted connection.
View Article and Find Full Text PDFPin1 peptidyl-prolyl isomerase (PPIase) catalyzes specifically the pSer/pThr-Pro motif. The cis-trans isomerization mechanism has been studied by various approaches, including X-ray crystallography, site-directed mutagenesis, and the kinetic isotope effect on isomerization. However, a complete picture of the reaction mechanism remains elusive.
View Article and Find Full Text PDFHMGB1 (high-mobility group B1) is a ubiquitously expressed bifunctional protein that acts as a nuclear protein in cells and also as an inflammatory mediator in the extracellular space. HMGB1 changes its functions according to the redox states in both intra- and extra-cellular environments. Two cysteines, Cys23 and Cys45, in the A-domain of HMGB1 form a disulfide bond under oxidative conditions.
View Article and Find Full Text PDF