Publications by authors named "Jun-ichi Kakehi"

Thermospermine, a structural isomer of spermine, is widely spread in the plant kingdom and has recently been shown to play a key role in the repression of xylem differentiation in vascular plants. However, a standard high-performance liquid chromatography (HPLC) protocol for detecting polyamines as their dansyl derivative cannot distinguish themospermine from spermine. These isomers become separated from each other after benzoylation.

View Article and Find Full Text PDF

Thermospermine acts in negative regulation of xylem differentiation and its deficient mutant of Arabidopsis thaliana, acaulis5 (acl5), shows excessive xylem formation and severe dwarfism. Studies of two dominant suppressors of acl5, sac51-d and sac52-d, have revealed that SAC51 and SAC52 encode a transcription factor and a ribosomal protein L10 (RPL10), respectively, and these mutations enhance translation of the SAC51 mRNA, which contains conserved upstream open reading frames in the 5' leader. Here we report identification of SAC53 and SAC56 responsible for additional suppressors of acl5.

View Article and Find Full Text PDF

Thermospermine, a structural isomer of spermine, is widely distributed in the plant kingdom and has been shown to play a role in repressing xylem differentiation by studies of its deficient mutant, acaulis5 (acl5), in Arabidopsis. Our results of microarray and real-time PCR analyses revealed that, in addition to a number of genes involved in xylem differentiation, genes related to auxin signaling were up-regulated in acl5 seedlings. These genes include MONOPTEROS, an auxin response factor gene, which acts as a master switch for auxin-dependent procambium formation, and its target genes.

View Article and Find Full Text PDF

Thermospermine is a structural isomer of spermine, which is one of the polyamines studied extensively in the past, and is produced from spermidine by the action of thermospermine synthase encoded by a gene named ACAULIS5 (ACL5) in plants. According to recent genome sequencing analyses, ACL5-like genes are widely distributed throughout the plant kingdom. In Arabidopsis, ACL5 is expressed specifically during xylem formation from procambial cells to differentiating xylem vessels.

View Article and Find Full Text PDF

Thermospermine is a structural isomer of spermine and is required for stem elongation in Arabidopsis thaliana. We noted the C3C3 arrangement of carbon chains in thermospermine (C3C3C4), which is not present in spermine (C3C4C3), and examined if it is functionally replaced with norspermine (C3C3C3) or not. Exogenous application of norspermine to acl5, a mutant defective in the synthesis of thermospermine, partially suppressed its dwarf phenotype, and down-regulated the level of the acl5 transcript which is much higher than that of the ACL5 transcript in the wild type.

View Article and Find Full Text PDF

Background: Polyamines are small polycationic molecules found ubiquitously in all organisms and function in a wide variety of biological processes. In the past decade, molecular and genetic studies using mutants and transgenic plants with an altered activity of enzymes involved in polyamine biosynthesis have contributed much to a better understanding of the biological functions of polyamines in plants.

Possible Roles: Spermidine is essential for survival of Arabidopsis embryos.

View Article and Find Full Text PDF

Loss-of-function mutants of the ACAULIS5 (ACL5) gene in Arabidopsis thaliana have severe defects in stem elongation. ACL5 was previously reported as encoding a spermine synthase. A more recent study, however, showed that the bacterial expressed recombinant ACL5 protein catalyzes the conversion of spermidine to thermospermine, a structural isomer of spermine, rather than to spermine.

View Article and Find Full Text PDF