Publications by authors named "Jun-ichi Iwata"

We report total-energy electronic-structure calculations based on the density-functional theory that provide stable adsorption sites, structural characteristics, and energy bands of carbon nanotubes (CNTs) adsorbed on the Si(001) stepped surfaces. We choose (5,5), (9,9), and (13,13) armchair CNTs with the diameters of 6.8 Å, 12.

View Article and Find Full Text PDF

Clefting of the soft palate occurs as a congenital defect in humans and adversely affects the physiological function of the palate. However, the molecular and cellular mechanism of clefting of the soft palate remains unclear because few animal models exhibit an isolated cleft in the soft palate. Using three-dimensional microCT images and histological reconstruction, we found that loss of TGFβ signaling in the palatal epithelium led to soft palate muscle defects in Tgfbr2(fl/fl);K14-Cre mice.

View Article and Find Full Text PDF

Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2(fl/fl);Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development.

View Article and Find Full Text PDF

GABAA receptor-associated protein (GABARAP) was initially identified as a protein that interacts with GABAA receptor. Although LC3 (microtubule-associated protein 1 light chain 3), a GABARAP homolog, has been localized in the dendrites and cell bodies of neurons under normal conditions, the subcellular distribution of GABARAP in neurons remains unclear. Subcellular fractionation indicated that endogenous GABARAP was localized to the microsome-enriched and synaptic vesicle-enriched fractions of mouse brain as GABARAP-I, an unlipidated form.

View Article and Find Full Text PDF

Volitional selection of action is subject to continuous adjustment under the influence of information obtained by monitoring behavioral consequences and by exploiting behavioral context based on prior knowledge about the environment. The rostral cingulate motor area (CMAr) is thought to be responsible for adjusting behavior by monitoring its consequences. To investigate whether the CMAr also plays a role in exploitation of behavioral context in action selection, we recorded neuronal activities from the CMAr while monkeys performed a reward-based motor selection task that required them to switch from one action to the other based on the amount of reward.

View Article and Find Full Text PDF

Cleft palate is one of the most common human birth defects and is associated with multiple genetic and environmental risk factors. Although mutations in the genes encoding transforming growth factor beta (TGFβ) signaling molecules and interferon regulatory factor 6 (Irf6) have been identified as genetic risk factors for cleft palate, little is known about the relationship between TGFβ signaling and IRF6 activity during palate formation. Here, we show that TGFβ signaling regulates expression of Irf6 and the fate of the medial edge epithelium (MEE) during palatal fusion in mice.

View Article and Find Full Text PDF

Previous studies have shown that elementary aspects of numerical abilities have developed in non-human primates. In the present study, we explored the potential for the development of a novel ability in the use of numerical operations by macaque monkeys (Macaca fuscata): adequate selection of a series of numerical actions toward achieving a behavioral goal. We trained monkeys to use a pair of devices to selectively add or subtract items to/from a digital array in order to match a previously viewed sample array.

View Article and Find Full Text PDF

Patients with mutations in either TGF-β receptor type I (TGFBR1) or TGF-β receptor type II (TGFBR2), such as those with Loeys-Dietz syndrome, have craniofacial defects and signs of elevated TGF-β signaling. Similarly, mutations in TGF-β receptor gene family members cause craniofacial deformities, such as cleft palate, in mice. However, it is unknown whether TGF-β ligands are able to elicit signals in Tgfbr2 mutant mice.

View Article and Find Full Text PDF

Cathepsin E (CE) is an intracellular aspartic proteinase that is exclusively expressed in cells of the gastrointestinal tracts, lymphoid tissues, urinary organs and red blood cells. However, the molecular mechanism by which CE is predominantly expressed in these cells remains unknown. Here, we report the identification of several transcription start sites of the CE gene and their regulatory factors in gastric adenosarcoma cells.

View Article and Find Full Text PDF

Cleft palate represents one of the most common congenital birth defects. Transforming growth factor β (TGFβ) signaling plays crucial functions in regulating craniofacial development, and loss of TGFβ receptor type II in cranial neural crest cells leads to craniofacial malformations, including cleft palate in mice (Tgfbr2(fl/fl);Wnt1-Cre mice). Here we have identified candidate target genes of TGFβ signaling during palatal formation.

View Article and Find Full Text PDF

Transforming growth factor-beta (Tgf-beta) signaling is crucial for regulating craniofacial development. Loss of Tgf-beta signaling results in defects in cranial neural crest cells (CNCC), but the mechanism by which Tgf-beta signaling regulates bone formation in CNCC-derived osteogenic cells remains largely unknown. In this study, we discovered that Tgf-beta regulates the basal transcriptional regulatory machinery to control intramembranous bone development.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved bulk-protein degradation pathway in which isolation membranes engulf the cytoplasmic constituents, and the resulting autophagosomes transport them to lysosomes. Two ubiquitin-like conjugation systems, termed Atg12 and Atg8 systems, are essential for autophagosomal formation. In addition to the pathophysiological roles of autophagy in mammals, recent mouse genetic studies have shown that the Atg8 system is predominantly under the control of the Atg12 system.

View Article and Find Full Text PDF

Inactivation of constitutive autophagy results in formation of cytoplasmic protein inclusions and leads to liver injury and neurodegeneration, but the details of abnormalities related to impaired autophagy are largely unknown. Here we used mouse genetic analyses to define the roles of autophagy in the aforementioned events. We report that the ubiquitin- and LC3-binding protein "p62" regulates the formation of protein aggregates and is removed by autophagy.

View Article and Find Full Text PDF

The aspartic proteinase cathepsin E is expressed predominantly in cells of the immune system and highly secreted by activated phagocytes, and deficiency of cathepsin E in mice results in a phenotype affecting immune responses. However, because physiologic substrates for cathepsin E have not yet been identified, the relevance of these observations to the physiologic functions of this protein remains speculative. Here, we show that cathepsin E specifically induces growth arrest and apoptosis in human prostate carcinoma tumor cell lines without affecting normal cells by catalyzing the proteolytic release of soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) from the cell surface.

View Article and Find Full Text PDF

Cathepsin E (CE) is an intracellular aspartic proteinase implicated in various physiological and pathological processes, yet its actual roles in vivo remain elusive. To assess the physiological significance of CE expression in tumor cells, human CE was stably expressed in human prostate carcinoma ALVA101 cells expressing very little CE activity. Tumor growth in nude mice with xenografted ALVA101/hCE cells was slower than with control ALVA101/mock cells.

View Article and Find Full Text PDF

Autophagy is a regulated lysosomal degradation process that involves autophagosome formation and transport. Although recent evidence indicates that basal levels of autophagy protect against neurodegeneration, the exact mechanism whereby this occurs is not known. By using conditional knockout mutant mice, we report that neuronal autophagy is particularly important for the maintenance of local homeostasis of axon terminals and protection against axonal degeneration.

View Article and Find Full Text PDF

Protein quality-control, especially the removal of proteins with aberrant structures, has an important role in maintaining the homeostasis of non-dividing neural cells. In addition to the ubiquitin-proteasome system, emerging evidence points to the importance of autophagy--the bulk protein degradation pathway involved in starvation-induced and constitutive protein turnover--in the protein quality-control process. However, little is known about the precise roles of autophagy in neurons.

View Article and Find Full Text PDF

Peroxisomes are degraded by autophagic machinery termed "pexophagy" in yeast; however, whether this is essential for peroxisome degradation in mammals remains unknown. Here we have shown that Atg7, an essential gene for autophagy, plays a pivotal role in the degradation of excess peroxisomes in mammals. Following induction of peroxisomes by a 2-week treatment with phthalate esters in control and Atg7-deficient livers, peroxisomal degradation was monitored within 1 week after discontinuation of phthalate esters.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl1n0ii459ho7qd8g9bqgma79hbg1nk5o): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once