Publications by authors named "Jun-ichi Goto"

Purpose: The eyes are one of the most frequently involved organs in sarcoidosis in Asia, including Japan. Sarcoid uveitis is the major complaint of ocular sarcoidosis. The detection of epithelioid granuloma (EG) requires histological biopsy of the uvea for the precise diagnosis of sarcoid uveitis, because it is challenging to diagnose sarcoid uveitis without a history of systemic sarcoidosis.

View Article and Find Full Text PDF

In hippocampal CA1 neurons of wild-type mice, a short tetanus (15 or 20 pulses at 100 Hz) or a standard tetanus (100 pulses at 100 Hz) to a naive input pathway induces long-term potentiation (LTP) of the responses. Low-frequency stimulation (LFS; 1000 pulses at 1 Hz) 60 min after the standard tetanus reverses LTP (depotentiation [DP]), while LFS applied 60 min prior to the standard tetanus suppresses LTP induction (LTP suppression). We investigated LTP, DP, and LTP suppression of both field excitatory postsynaptic potentials and population spikes in CA1 neurons of mice lacking the inositol 1,4,5-trisphosphate (IP) receptor (IPR)-binding protein released with IP (IRBIT).

View Article and Find Full Text PDF

Tuberous sclerosis complex (TSC) is caused by mutations in or , whose gene products inhibit the small G-protein Rheb1. Rheb1 activates mTORC1, which may cause refractory epilepsy, intellectual disability, and autism. The mTORC1 inhibitors have been used for TSC patients with intractable epilepsy.

View Article and Find Full Text PDF

In CA1 neurons of guinea pig hippocampal slices, long-term potentiation (LTP) was induced in field excitatory postsynaptic potentials (EPSPs) or population spikes (PSs) by the delivery of high-frequency stimulation (HFS, 100 pulses at 100 Hz) to CA1 synapses, and was reversed by the delivery of a train of low-frequency stimulation (LFS, 1000 pulses at 2 Hz) at 30 min after HFS (depotentiation), and this effect was inhibited when test synaptic stimulation was halted for a 19-min period after HFS or for a 20-min period after LFS or applied over the same time period in the presence of an antagonist of N-methyl-D-aspartate receptors (NMDARs), group I metabotropic glutamate receptors (mGluRs), or inositol 1, 4, 5-trisphosphate receptors (IPRs). Depotentiation was also blocked by the application of a Ca/calmodulin-dependent protein kinase II (CaMKII) inhibitor or a calcineurin inhibitor applied in the presence of test synaptic input for a 10-min period after HFS or for a 20-min period after LFS. These results suggest that, in postsynaptic neurons, the coactivation of NMDARs and group I mGluRs due to sustained synaptic activity following LTP induction results in the activation of IPRs and CaMKII, which leads to the activation of calcineurin after LFS and depotentiation of CA1 synaptic responses.

View Article and Find Full Text PDF

TRPM2 is a Ca-permeable, nonselective cation channel that plays a role in oxidant-induced cell death, insulin secretion, and cytokine release. Few TRPM2 inhibitors have been reported, which hampers the validation of TRPM2 as a drug target. While screening our in-house marine-derived chemical library, we identified scalaradial and 12-deacetylscalaradial as the active components within an extract of an undescribed species of Cacospongia (class Demospongiae, family Thorectidae) that strongly inhibited TRPM2-mediated Ca influx in TRPM2-overexpressing HEK293 cells.

View Article and Find Full Text PDF
Article Synopsis
  • This study explored how low-frequency stimulation (LFS) affects the ability of CA1 neurons in guinea pig hippocampal slices to undergo long-term potentiation (LTP) after a high-frequency stimulation (HFS).
  • It was found that activating group I metabotropic glutamate receptors (mGluRs) prior to HFS suppresses LTP, as does the preconditioning with LFS.
  • The suppression of LTP can be reversed by blocking group I mGluRs or inositol 1,4,5-trisphosphate receptors (IP3Rs) right before HFS, indicating that mGluR activation following LFS interferes with LTP induction.
View Article and Find Full Text PDF

The long-term potentiation (LTP) in the field excitatory postsynaptic potential (EPSP) induced at hippocampal CA1 pyramidal neuron synapses by delivery of high frequency stimulation (HFS), a tetanus of 100 pulses at 100Hz, is decreased (depotentiation) by a train of low frequency stimulation (LFS) of 1000 pulses at 2Hz applied 30min later. Inositol 1, 4, 5-trisphosphate receptors (IP3Rs) activated both during the HFS and after the LFS are involved in this depotentiation, the former triggering, and the latter modifying, LTP induction (decreasing the amplitude of the LTP established by the priming HFS). Furthermore, the decrease in the LTP at CA1 synapses requires activation of IP3Rs during LFS and activation of calcineurin after LFS.

View Article and Find Full Text PDF

The coupling of ER Ca(2+)-sensing STIM proteins and PM Orai Ca(2+) entry channels generates "store-operated" Ca(2+) signals crucial in controlling responses in many cell types. The dimeric derivative of 2-aminoethoxydiphenyl borinate (2-APB), DPB162-AE, blocks functional coupling between STIM1 and Orai1 with an IC50 (200 nM) 100-fold lower than 2-APB. Unlike 2-APB, DPB162-AE does not affect L-type or TRPC channels or Ca(2+) pumps at maximal STIM1-Orai1 blocking levels.

View Article and Find Full Text PDF

Gangliosides (sialic acid-containing glycosphingolipids) play important roles in many physiological functions, including synaptic plasticity in the hippocampus, which has been suggested as the basal cellular process of learning and memory in the brain. In the present study, long-term potentiation (LTP) and long-term depression (LTD) in CA1 hippocampal neurons and learning behavior were examined in mice treated with (D)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol ((D)-PDMP), an inhibitor of ganglioside biosynthesis. Mice treated with (D)-PDMP, but not those treated with (L)-PDMP, showed impairment of LTP induction in hippocampal CA1 neurons without any significant change in LTD formation and also showed a failure of learning in the 4-pellet taking test.

View Article and Find Full Text PDF

We investigated the role of inositol 1, 4, 5-trisphosphate receptors (IP3Rs), activated during preconditioning low-frequency afferent stimulation (LFS), in the subsequent induction of long-term potentiation (LTP) in CA3 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential (EPSP) by the delivery of high-frequency stimulation (HFS, a tetanus of two trains of 100 pulses at 100Hz with a 10s interval) to mossy fiber-CA3 neuron synapses was suppressed when CA3 synapses were preconditioned by the LFS of 1000 pulses at 2Hz and this effect was inhibited when the LFS preconditioning was performed in the presence of an IP3R antagonist or a protein phosphatase inhibitor. Furthermore, activation of group 1 metabotropic glutamate receptors (mGluRs) during HFS canceled the effects of an IP3R antagonist given during preconditioning LFS on the subsequent LTP induction at mossy fiber-CA3 synapses.

View Article and Find Full Text PDF

The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) is an intracellular Ca(2+) release channel, and its opening is controlled by IP(3) and Ca(2+). A single IP(3) binding site and multiple Ca(2+) binding sites exist on single subunits, but the precise nature of the interplay between these two ligands in regulating biphasic dependence of channel activity on cytosolic Ca(2+) is unknown. In this study, we visualized conformational changes in IP(3)R evoked by various concentrations of ligands by using the FRET between two fluorescent proteins fused to the N terminus of individual subunits.

View Article and Find Full Text PDF

Gangliosides (sialic acid-containing glycosphingolipids) play important roles in many physiological functions, including synaptic plasticity in the hippocampus, which is considered as a cellular mechanism of learning and memory. In the present study, three types of synaptic plasticity, long-term potentiation (LTP), long-term depression (LTD) and reversal of LTP (depotentiation, DP), in the field excitatory post-synaptic potential in CA1 hippocampal neurons and learning behavior were examined in β1,4-N-acetylgalactosaminyltransferase (β1,4 GalNAc-T; GM2/GD2 synthase) gene transgenic (TG) mice, which showed a marked decrease in b-pathway gangliosides (GQ1b, GT1b and GD1b) in the brain and isolated hippocampus compared with wild-type (WT) mice. The magnitude of the LTP induced by tetanus (100 pulses at 100 Hz) in TG mice was significantly smaller than that in control WT mice, whereas there was no difference in the magnitude of the LTD induced by three short trains of low-frequency stimulation (LFS) (200 pulses at 1 Hz) at 20 min intervals between the two groups of mice.

View Article and Find Full Text PDF

The inositol 1,4,5-trisphosphate (IP(3)) receptor is highly expressed in cerebellar Purkinje cells and mediates conspicuous calcium release from intracellular calcium stores. Receptor stimulation, such as through mGluR1, activates the G(q)-PLC pathway, which leads to IP(3)-induced calcium release and subsequent cellular responses, including cerebellar long-term depression in Purkinje cells. Recent studies have demonstrated the regulatory mechanisms of IP(3) receptor, revealing activation via IP(3) and Ca(2+), inactivation via high concentrations of Ca(2+), and modulation by various proteins that bind to the IP(3) receptor.

View Article and Find Full Text PDF

Long-term potentiation (LTP) at hippocampal mossy fiber-CA3 pyramidal neuron synapses was induced in the field excitatory postsynaptic potential (EPSP) by the delivery of HFS (a tetanus of two trains of 100 pulses at 100 Hz with a 10s interval) and was reversed (depotentiated) by a train of LFS of 1000 pulses at 2 Hz applied 60 min later. This depotentiation was triggered by activation of inositol 1, 4, 5-trisphosphate receptors (IP3Rs) during HFS, which may increase the postsynaptic intracellular Ca(2+) concentration, leading to a cellular process responsible for modification of LTP expression at mossy fiber-CA3 synapses. Furthermore, we found that activation of IP3Rs or protein phosphatase during LFS was required for the reversal of LTP expressed at mossy fiber-CA3 synapses.

View Article and Find Full Text PDF

Store-operated calcium entry (SOCE) is an important mechanism for replenishing intracellular calcium stores and for sustaining calcium signaling. We developed a method for synthesis of bisboron compounds that have two borinic acids or their esters in one molecule. These compounds are analogues of 2-APB, which is widely used as a membrane-permeable SOCE inhibitor.

View Article and Find Full Text PDF
Article Synopsis
  • Aryl beta-aminoethyl ketones are effective blockers of tissue transglutaminase.
  • Thiophene groups and N-benzyl N-t-butyl aminoethyl structures enhance their inhibitory power.
  • These findings could pave the way for new treatments targeting tissue transglutaminase-related conditions.
View Article and Find Full Text PDF

Store-operated calcium entry (SOCE) or calcium release-activated calcium current (I(CRAC)) is a critical pathway to replenish intracellular calcium stores, and plays indispensable roles in cellular functions such as antigen-induced T lymphocyte activation. Despite the importance of I(CRAC) in cellular functions, lack of potent and specific inhibitor has limited the approaches to the function of I(CRAC) in native cells. 2-Aminoethyl diphenylborinate (2-APB) is a widely used SOCE/I(CRAC) inhibitor, while its effect is rather unspecific.

View Article and Find Full Text PDF

Changes in synaptic efficacy at the parallel fiber (PF)-Purkinje cell (PC) synapse are postulated to be a cellular basis for motor learning. Although long-term efficacy changes lasting more than an hour at this synapse, i.e.

View Article and Find Full Text PDF