Publications by authors named "Jun-dae Kim"

Atherosclerosis, characterized by the accumulation of lipoproteins and lipids within the vascular wall, underlies a heart attack, stroke, and peripheral artery disease. Endothelial inflammation is the primary component driving atherosclerosis, promoting leukocyte adhesion molecule expression (e.g.

View Article and Find Full Text PDF

A comprehensive understanding of endothelial cell lineage specification will advance cardiovascular regenerative medicine. Recent studies found that unique epigenetic signatures preferentially regulate cell identity genes. We thus systematically investigate the epigenetic landscape of endothelial cell lineage and identify MECOM to be the leading candidate as an endothelial cell lineage regulator.

View Article and Find Full Text PDF

Accumulating evidence indicates that the APOA1 binding protein (AIBP)-a secreted protein-plays a profound role in lipid metabolism. Interestingly, AIBP also functions as an NAD(P)H-hydrate epimerase to catalyze the interconversion of NAD(P)H hydrate [NAD(P)HX] epimers and is renamed as NAXE. Thus, we call it NAXE hereafter.

View Article and Find Full Text PDF

Shwachman-Diamond syndrome (SDS; OMIM #260400) is caused by variants in SBDS (Shwachman-Bodian-Diamond syndrome gene), which encodes a protein that plays an important role in ribosome assembly. Recent reports suggest that recessive variants in EFL1 are also responsible for SDS. However, the precise genetic mechanism that leads to EFL1-induced SDS remains incompletely understood.

View Article and Find Full Text PDF

Emerging studies indicate that APOA-I binding protein (AIBP) is a secreted protein and functions extracellularly to promote cellular cholesterol efflux, thereby disrupting lipid rafts on the plasma membrane. AIBP is also present in the mitochondria and acts as an epimerase, facilitating the repair of dysfunctional hydrated NAD(P)H, known as NAD(P)H(X). Importantly, AIBP deficiency contributes to lethal neurometabolic disorder, reminiscent of the Leigh syndrome in humans.

View Article and Find Full Text PDF

Unpaired fins, which are the most ancient form of locomotory appendages in chordates, had emerged at least 500 million years ago. While it has been suggested that unpaired fins and paired fins share structural similarities, cellular and molecular mechanisms that regulate the outgrowth of the former have not been fully elucidated yet. Using the ventral fin fold in zebrafish as a model, here, we investigate how the outgrowth of the unpaired fin is modulated.

View Article and Find Full Text PDF

Endothelial cells appear to emerge from diverse progenitors. However, to which extent their developmental origin contributes to define their cellular and molecular characteristics remains largely unknown. Here, we report that a subset of endothelial cells that emerge from the tailbud possess unique molecular characteristics that set them apart from stereotypical lateral plate mesoderm (LPM)-derived endothelial cells.

View Article and Find Full Text PDF

Paired Box (Pax) gene family, a group of transcription regulators have been implicated in diverse physiological processes. However, their role during hematopoiesis which generate a plethora of blood cells remains largely unknown. Using a previously reported single cell transcriptomics data, we analyzed the expression of individual Pax family members in hematopoietic cells in zebrafish.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Hypercholesterolemia, the driving force of atherosclerosis, accelerates the expansion and mobilization of hematopoietic stem and progenitor cells (HSPCs). The molecular determinants connecting hypercholesterolemia with hematopoiesis are unclear. Here, we report that a somite-derived prohematopoietic cue, AIBP, orchestrates HSPC emergence from the hemogenic endothelium, a type of specialized endothelium manifesting hematopoietic potential.

View Article and Find Full Text PDF

Intussusceptive angiogenesis (IA) is a complementary method to sprouting angiogenesis (SA). The hallmark of IA is formation of trans-capillary tissue pillars, their fusion and remodeling of the vascular plexus. In this study, we investigate the formation of the zebrafish caudal vein plexus (CVP) in Tg(fli1a:eGFP) and the synergistic interaction of IA and SA in crafting the archetypical angio-architecture of the CVP.

View Article and Find Full Text PDF

Background: Bone morphogenetic protein (BMP) signaling has multiple roles in the development and function of the blood vessels. In humans, mutations in BMP receptor type 2 (BMPR2), a key component of BMP signaling, have been identified in the majority of patients with familial pulmonary arterial hypertension (PAH). However, only a small subset of individuals with mutation develops PAH, suggesting that additional modifiers of BMPR2 function play an important role in the onset and progression of PAH.

View Article and Find Full Text PDF

Functional blood vessel growth depends on generation of distinct but coordinated responses from endothelial cells. Bone morphogenetic proteins (BMP), part of the TGFβ superfamily, bind receptors to induce phosphorylation and nuclear translocation of SMAD transcription factors (R-SMAD1/5/8) and regulate vessel growth. However, SMAD1/5/8 signalling results in both pro- and anti-angiogenic outputs, highlighting a poor understanding of the complexities of BMP signalling in the vasculature.

View Article and Find Full Text PDF

Aquaporin 8 (Aqp8) is a transmembrane protein that is selectively permeated by water and some small solutes, and physiologically contributes to acid-base equilibrium in the gastrointestinal tract. Here, we described the characterization and spatiotemporal expression pattern of zebrafish aqp8 (zaqp8) gene family, including zaqp8a.1, zaqp8a.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a rare but progressive and currently incurable disease, which is characterized by vascular remodeling in association with muscularization of the arterioles, medial thickening and plexiform lesion formation. Despite our advanced understanding of the pathogenesis of PAH and the recent therapeutic advances, PAH still remains a fatal disease. In addition, the susceptibility to PAH has not yet been adequately explained.

View Article and Find Full Text PDF

While increasing evidence indicates the important function of histone methylation during development, how this process influences cardiac development in vertebrates has not been explored. Here, we elucidate the functions of two histone H3 lysine 4 (H3K4) methylation enzymes, SMYD3 and SETD7, during zebrafish heart morphogenesis using gene expression profiling by whole mount in situ hybridization and antisense morpholino oligonucleotide (MO)-based gene knockdown. We find both smyd3 and setd7 are highly expressed within developing zebrafish heart and knock-down of these genes led to severe defects in cardiac morphogenesis without altering the expressions pattern of heart markers, including cmlc2, vmhc, and amhc.

View Article and Find Full Text PDF

Objective: It has been shown that Mindbomb (Mib), an E3 Ubiquitin ligase, is an essential modulator of Notch signaling during development. However, its effects on vascular development remain largely unknown.

Approaches And Results: We identified a number of novel proteins that physically interact with Mib, including the Factor Inhibiting Hypoxia Inducible Factor 1 (FIH-1, also known as HIF1AN) from a yeast two hybrid screen, as previously reported.

View Article and Find Full Text PDF

Endothelial cells are a highly diverse group of cells which display distinct cellular responses to exogenous stimuli. Although the aptly named vascular endothelial growth factor-A signaling pathway is hailed as the most important signaling input for endothelial cells, additional factors also participate in regulating diverse aspects of endothelial behaviors and functions. Given this heterogeneity, these additional factors seem to play a critical role in creating a custom-tailored environment to regulate behaviors and functions of distinct subgroups of endothelial cells.

View Article and Find Full Text PDF

Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity.

View Article and Find Full Text PDF

The initial step of atrioventricular (AV) valve development involves the deposition of extracellular matrix (ECM) components of the endocardial cushion and the endocardial-mesenchymal transition. While the appropriately regulated expression of the major ECM components, Versican and Hyaluronan, that form the endocardial cushion is important for heart valve development, the underlying mechanism that regulates ECM gene expression remains unclear. We found that zebrafish crip2 expression is restricted to a subset of cells in the AV canal (AVC) endocardium at 55 hours post-fertilization (hpf).

View Article and Find Full Text PDF

Lymphatic vessels are essential to regulate interstitial fluid homeostasis and diverse immune responses. A number of crucial factors, such as VEGFC, SOX18, PROX1, FOX2C, and GJC2, have been implicated in differentiation and/or maintenance of lymphatic endothelial cells (LECs). In humans, dysregulation of these genes is known to cause lymphedema, a debilitating condition which adversely impacts the quality of life of affected individuals.

View Article and Find Full Text PDF

Objective: Apelin and its cognate receptor Aplnr/Apj are essential for diverse biological processes. However, the function of Apelin signaling in lymphatic development remains to be identified, despite the preferential expression of Apelin and Aplnr within developing blood and lymphatic endothelial cells in vertebrates. In this report, we aim to delineate the functions of Apelin signaling during lymphatic development.

View Article and Find Full Text PDF

Aberrant blood vessel formation contributes to a wide variety of pathologies, and factors that regulate angiogenesis are attractive therapeutic targets. Endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN) is a neuropilin-related transmembrane protein expressed in ECs; however, its potential effect on VEGF responses remains undefined. Here, we generated global and EC-specific Esdn knockout mice and demonstrated that ESDN promotes VEGF-induced human and murine EC proliferation and migration.

View Article and Find Full Text PDF

Rationale: The emergence of lymphatic endothelial cells (LECs) seems to be highly regulated during development. Although several factors that promote the differentiation of LECs in embryonic development have been identified, those that negatively regulate this process are largely unknown.

Objective: Our aim was to delineate the role of bone morphogenetic protein (BMP) 2 signaling in lymphatic development.

View Article and Find Full Text PDF