Publications by authors named "Jun-Yong Han"

Hypertrophic cardiomyopathy (HCM) is a common heritable cardiomyopath. Although considerable effort has been made to understand the pathogenesis of HCM, the mechanism of how long noncoding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network result in HCM remains unknown. In this study, we acquired a total of 520 different expression profiles of lncRNAs (DElncRNAs) and 371 messenger RNAs (mRNA, DEGs) by microarray and 33 microRNAs (DEmiRNAs) by sequencing in plasma of patients with HCM and healthy controls.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is one of the most common and serious malignancies in China. However, the exact mechanisms of tumor formation and progression are unclear. As late diagnosis and poor therapeutic efficacy result in lower survival rates, identifying biomarkers for early detection, prognostic evaluation, and recurrence monitoring of ESCC is necessary.

View Article and Find Full Text PDF

Background: The pathophysiology of type 2 diabetes is progressive pancreatic beta cell failure with consequential reduced insulin secretion. Glucotoxicity results in the reduction of beta cell mass in type 2 diabetes by inducing apoptosis. Autophagy is essential for the maintenance of normal islet architecture and plays a crucial role in maintaining the intracellular insulin content by accelerating the insulin degradation rate in beta cells.

View Article and Find Full Text PDF

Selenium as a component of glutathione peroxidase may be beneficial in insulin resistance, hence potentially may modify the risk of diabetes and cardiovascular disease. The aim of our study was to evaluate whether selenium can also alter high glucose (HG), advanced glycation end products (AGE), high insulin (HI) and H2O2-induced expression of cyclooxygenase (COX)-2 and P-selectin. Human umbilical vein endothelial cells (HUVECs) were pretreated with selenium and stimulated by HG, AGE, HI and H2O2.

View Article and Find Full Text PDF

Autophagy is an intracellular catabolic system, which enables cells to capture cytoplasmic components for degradation within lysosomes. Autophagy is involved in development, differentiation and tissue remodeling in various organisms, and is also implicated in certain diseases. Recent studies demonstrate that autophagy is necessary to maintain architecture and function of pancreatic beta cells.

View Article and Find Full Text PDF

Objective: To discuss the effect of protein kinase C (PKC) on regulation of ecto-5'-nucleotidase activity by lysophosphatidylcholine(LPC) in human umbilical endothelial cells (HUVEC).

Methods: Experiments were conducted in HUVEC grown on dishes which were divided into 4 groups (n=15): (1) Control group in which only eAMP (5 micromol/L) was added; (2) LPC group in which HUVEC were incubated with LPC (10 micromol/L) before eAMP was added; (3) Chelerythrine group in which cells were pre-incubated with the PKC inhibitor chelerythrine (100 micromol/L) before LPC and eAMP were added; (4) alpha, beta-Methyladenosine-5'-Diphosphate (AOPCP) group in which cells were incubated with AOPCP (10 micromol/L) before eAMP was added. Etheno-adenosine production was detected at 15th, 30th, 45th min with high performance liquid chromatography(HPLC) respectively.

View Article and Find Full Text PDF

Aim: To study the relationship between P38MAPK and MCP-1 in diabetic HUVEC and the mechanism of anti-atherosclerosis of selenium.

Methods: HUVEC were treated with high concentration of glucose, advanced glycosylation end products (AGE), high concentration of insulin or H(2)O(2) with or without pre-treatment with SB203580 (P38MAPK specific inhibitor) or selenium. The expression of phospho-P38MAPK and MCP-1 in HUVEC was detected by Western blot or RT-PCR, respectively.

View Article and Find Full Text PDF