Publications by authors named "Jun-Ya Fujiyoshi"

From the analysis based on the broken-symmetry density functional theory (DFT) calculations, we in this study propose a strategy to enhance the open-shell characters and third-order nonlinear optical (NLO) properties of π-stacked dimers composed of antiaromatic molecules with weak open-shell characters. For this purpose, we here constructed cofacial π-stacked dimer models composed of aromatic and antiaromatic Ni porphyrins in order to examine the π-π stacking distance (R) dependence of the diradical characters (y) and static second hyperpolarizabilities (γ). The antiaromatic porphyrin dimers are found to have intermediate y around R∼3.

View Article and Find Full Text PDF

The aromaticity of dicyclopenta-fused acenes (DPAs) and polyacenes (PAs) of increasing size has been studied by evaluation with the GIMIC method at the DFT level of the magnetically-induced currents (MICs), and by analyzing their spatial distributions. For these open-shell singlet molecules, spin-restricted and -unrestricted treatments provide very different MICs, the latter ones providing the most reliable solution. These MICs and the differences between spin-restricted and -unrestricted treatments are interpreted in terms of the bond current strengths and the current gradients, which indicate the bond aromaticity and enable the spatial distributions of the diatropic and paratropic currents to be analyzed, respectively.

View Article and Find Full Text PDF

Fused benzene rings to antiaromatic compounds generally improve their stability but attenuate their antiaromaticity. The opposite case is now reported. Ni benzonorcorroles were synthesized and the effect of benzo-fusion on the antiaromaticity was elucidated.

View Article and Find Full Text PDF

The diradical characters () and third-order nonlinear optical (NLO) properties of open-shell quinoidal oligothiophene derivatives with phenoxyl groups, and the corresponding reduced (hydrogenated)-state oligomers, are investigated by using the broken-symmetry density functional theory method. The oxidized (dehydrogenated) states are predicted to have an open-shell singlet ground state and their values increase with the number of units. Static second hyperpolarizabilities () of the open-shell oligomers with intermediate are shown to be enhanced significantly compared with those of the closed-shell analogues.

View Article and Find Full Text PDF

Using the spin-unrestricted density functional theory method, we investigate the interplay between the diradical character y and second hyperpolarizabilities γ (the third-order nonlinear optical (NLO) properties at the molecular scale) of corannulene derivatives with two phenoxyl radicals. This molecule in the singlet state exhibits intermediate y and thus displays a significantly larger γ value than the triplet state and the closed-shell bis-phenol analogue. We also examine the planar molecules involving a coronene moiety in place of the curved corannulene.

View Article and Find Full Text PDF

The spin-unrestricted coupled-cluster method was employed to investigate the origin of the second hyperpolarizabilities (γ) in model systems involving metal-carbon bonds with various bond lengths as a function of their diradical character (y) and charge transfer (CT). These systems exhibit unique features: (i) σ electrons give the dominant contribution to γ, (ii) the π electrons contribution to γ is negative, (iii) when the bond length increases, γ exhibits two positive extrema, which are associated with the CT nature and the intermediate diradical character, respectively, (iv) and one negative extremum corresponding to intermediate CT and diradical character, and (v) in the bond stretching process, the maximum γ amplitude per σ bond is about 7 times larger than that per π bond. These features are significantly different from those observed in pure organic systems.

View Article and Find Full Text PDF

To create a design guideline for efficient third-order nonlinear optical (NLO) molecules, the chain-length (n) dependences of the diradical character y and the longitudinal second hyperpolarizability γ of quinoidal oligothiophenes (QTs), from monomers to octamers, involving thiophene-S,S-dioxide rings are investigated by using the density functional theory method. It turns out that the diradical character of the modified QTs is reduced as compared to those of the pristine QTs. By introducing an appropriate number of oxidized rings into the QT framework, intermediate y values can be achieved even in the systems with large values of n, in which the pristine QTs are predicted to have pure diradical character.

View Article and Find Full Text PDF

Focusing on the original and extended indenofluorene frameworks, we theoretically investigate the interplay between the open-shell character, the aromaticity, and the second hyperpolarizabilities γ. Interestingly, the odd-electron density distribution, which illustrates the spatial contribution of the open-shell character, is found to well correlate with the magnetic shielding tensor distribution, which indicates the magnetic criteria of the aromaticity. This can be explained with the partial destruction of the π-delocalization due to the emergence of odd (unpaired) electrons.

View Article and Find Full Text PDF